

Impressum

Herausgeberin

Baudirektion Kanton Zürich, AWEL - Amt für Abfall, Wasser, Energie und Luft

Berichterfassung

Nadine SchneiderAWEL, Sektion AbfallwirtschaftCarole GuggenheimAWEL, Sektion AltlastenChristian GötzAWEL, Gewässerschutzlabor

Datenauswertung / Unterstützung Berichterfassung

Martin Hoffmann, Evelyne Kieser FRIEDLIPARTNER AG

Michelle Salvisberg AWEL, Gewässerschutzlabor

Workshop

Juliane Hollender Eawag, Abteilung Umweltchemie

Armin Bachofner Stadt Winterthur, Abteilung Entsorgung

Sebastian Stötzer Bachema, Organische Analytik

Patrick Locher AWA Kt. Bern, Abteilung Betriebe und Abfall

Christian Götz AWEL, Gewässerschutzlabor

Pius Niederhauser AWEL, Sektion Oberflächengewässer

Carole Guggenheim AWEL, Sektion Altlasten

Nadine Schneider AWEL, Sektion Abfallwirtschaft

Daniel Bürgi, Martin Hoffmann, Evelyne Kieser FRIEDLIPARTNER AG

Analytik

Oliver Jäggi, Michelle Salvisberg, Andreas Wyss AWEL, Gewässerschutzlabor

Martin Loos enviBee GmbH EMPA – Eidgenössische Materialprüfungs- und Forschungsanstalt

Bachema AG

Titelfoto

Probenahme aus Sickerwasserschacht - Deponie in Nachsorge, September 2021

Herausgabedatum

Januar 2023

Zitierung

Organische Spurenstoffe – Emerging Pollutants. Untersuchung von Deponiesickerwasser. AWEL – Amt für Abfall, Wasser, Energie und Luft, Kanton Zürich, 2023

Inhalt

Zusammenfassung			3
1. Eii	1.1. 1.2. 1.3. 1.3.1. 1.3.2. 1.3.3.	Ausgangslage Vorgehen und Ziele Bisherige Untersuchungen Spezialuntersuchung 2013 Spezialuntersuchungen 2014 / 2015 Ökotoxikologische Relevanz von Deponiesickerwasser 2016	5 7 8 8 8
2. Me	ethodik 2.1.	Deponiestandorte	10
	2.2.	Substanzauswahl / Workshop	11
	2.3.	Analytische Methoden	12
3. Re	2.4. esultate (3.1. 3.2. 3.3.	Grundlagen Gefährdungsbeurteilung und Gefährdungsbeurteilung Quantitative Analytik Resultate pro Substanzklasse Resultate Non-Target Screenings	13 16 16 17 31
4. Sc		gerungen Fazit Weiteres Vorgehen	36 36 37
5. Lit	teraturve	erzeichnis	39
Anha	ng 1 – M	ethoden	41
Anha	ı ng 2 – Ül	persichtstabellen Resultate / Grenzwerte Tvp B – Tvp E	46

Zusammenfassung

Sickerwasser von Deponien enthalten mehrere tausend Einzelsubstanzen, darunter auch eine Vielzahl von unbekannten Stoffen. Je nach abgelagertem Abfall weisen sie ein heterogenes Spektrum an Schadstoffen auf. Diese Stoffe gelangen entweder durch Direkteinleitung des Sickerwassers in einen nahegelegenen Vorfluter oder nach Durchlaufen einer Abwasserreinigungsanlage in die Gewässer, wodurch sich negative Konsequenzen für aquatische Organismen sowie längerfristig auch für Trinkwasserressourcen ergeben können.

Daher untersuchte das Amt für Abfall, Wasser, Energie und Luft (AWEL) des Kantons Zürich 2021–2022 das Auftreten und die Umweltrelevanz solcher durch den Wasserpfad austretende Deponieschadstoffe. Der Fokus lag dabei auf sogenannten Emerging Pollutants. Bei Emerging Pollutants handelt es sich um einen Sammelbegriff für verschiedene Substanzen mit unterschiedlichen Eigenschaften und Einsatzgebieten. Über deren Art, Vorkommen oder Gehalt ist heute nur wenig bekannt, entsprechend sind sie auch kaum gesetzlich geregelt. Viele von ihnen sind in der Umwelt schwer abbaubar oder weisen langlebige Transformationsprodukte auf. Zu den Emerging Pollutants im Bereich Deponien zählen zum Beispiel Bestandteile von Arzneimitteln, Pestizide, Flammschutzmittel, Industrie-Additive, Kraftstoff-Additive, Nanomaterialien, Nebenprodukte der Trinkwasserentkeimung, Perund Polyfluorierte Substanzen, Tenside, Weichmacher sowie weitere Chemikalienrückstände aus industriellen Anwendungen. Die meisten dieser Substanzen werden dabei nicht routinemässig in Umweltüberwachungsprogrammen erfasst. Aufgrund der potenziellen Auswirkungen von Emerging Pollutants auf aquatische Organismen oder Trinkwasserressourcen sowie dem Kenntnismangel bezüglich ihrem Vorkommen, Verhalten und Verbleib in der Umwelt, ist es wichtig, die Vielfalt dieser Stoffe sowie deren unbekannten Belastungen im Kanton Zürich zu erfassen.

Im Rahmen eines Expertenworkshops mit Vertretern aus den Fachgebieten Abfallwirtschaft und Deponien, Altlasten, Oberflächengewässer, Schadstoffdynamik sowie Organische Analytik wurde eine Vorauswahl der zu untersuchenden Substanzklassen getroffen. Als prioritär wurden daraufhin folgende Substanzen für die Untersuchungen ausgewählt: Flammschutzmittel (Bromierte und Organophosphor-Flammschutzmittel), Polychlorierte Biphenyle, Phthalate, Bisphenole, Thiazole, Per- und Polyfluorierte Alkylsubstanzen, Aniline und Chloraniline, Acrylamid, Nonylphenol und Derivate, Phenole und Chlorphenole, Chlorbenzole, Nitroverbindungen und flüchtige organische Verbindungen. Zusätzlich wurden typische Vertreter von Pestiziden, Arzneimittel, Süssstoffe und Korrosionsschutzmittel untersucht. Um möglichst vollständige qualitative Informationen zur stofflichen Belastung der unterschiedlichen Sickerwässer zu erhalten, wurden auch Screenings der Sickerwässer mit gas- und flüssigchromatographischen Methoden (GC-MS und LC-HRMS) herangezogen.

Insgesamt wurden 25 Deponiesickerwasser aus unterschiedlichen Deponietypen und Deponiephasen (in Betrieb und in Nachsorge) untersucht. Aufbauend auf den Spezialuntersuchungen aus den Jahren 2013 bis 2016 wurden dieselben Deponien bzw. Kompartimente ins Untersuchungsprogramm aufgenommen und mit neu errichteten Deponien ergänzt.

In den Sickerwässern der untersuchten Deponie-Kompartimente wurden knapp 270 Substanzen identifiziert und quantifiziert. Rechnet man die im Screening gemessenen, aber nicht identifizierten Stoffe dazu, konnten in den Sickerwasserproben rund 8'000-10'000 Substanzen gefunden werden. Typ und Ursprung dieser Stoffe sind sehr divers: Neben zahlreichen Chemikalienrückständen aus

industriellen Anwendungen wurden in fast allen Deponien Per- und Polyfluorierte Alkylsubstanzen, Rückstände aus Verbrennungsprozessen (Polyzyklische aromatische Kohlenwasserstoffe und NSO-Heterozyklen), Biozide, Korrosionsschutzmittel, Süssstoffe und Arzneimittel gemessen. Typische organische Substanzen aus Bauabfällen, also Stoffe aus den Kategorien Materialschutz (Pestizide), Verbrennungsprozesse oder Flammschutzmittel, welche zu einem Grossteil als brandschutztechnische Anforderungen im Baugewerbe eingesetzt werden, konnten wie erwartet im Sickerwasser aller untersuchten Deponietypen gefunden werden, da diese in allen Deponien abgelagert werden können. Ähnlich verhält es sich für belastetes Aushubmaterial, welches – abhängig vom Verschmutzungsgrad – ebenfalls in den meisten Deponien abgelagert werden darf und entsprechend viele nicht klar eingrenzbare Substanzklassen enthält. Bei den Deponien Typ D und Typ E ist die Stoffvielfalt grösser, da Rückstände aus Kehrrichtverbrennungsanlagen und verschiedene Industrieabfälle abgelagert werden. Die Sickerwässer der verschiedenen Deponie-Kompartimente sind bezogen auf die Stoffzusammensetzung insgesamt sehr heterogen. Bis auf einige Ausnahmen lassen sich die Quellen der gefundenen Substanzen aufgrund der abgelagerten Abfälle nur bedingt erklären oder voraussagen. Zwischen dem Ablagerungszeitraum und den im Sickerwasser nachgewiesenen Stoffen scheint es keine offensichtlichen Zusammenhänge zu geben.

Von den Substanzen welche bezüglich der Gefährdung von Oberflächengewässern beurteilbar sind, zeigten folgende Substanzen oder Substanzklassen in mehreren Kompartimenten Konzentrationen über der PNEC (predicted no effect concentration) oder über dem zehnfachen Konzentrationswert nach Altlastenverordnung: Nonylphenole, Bisphenole, Per- und Polyfluorierte Alkylsubstanzen, Aniline, Phenole und Methylenchlorid. Bei einer Einleitung von Deponiesickerwasser in ein Oberflächengewässer (sofort oder in der Nachsorgephase), wäre eine Gefährdung der Oberflächengewässer hinsichtlich der genannten Substanzklassen nicht auszuschliessen.

Um das tatsächliche Freisetzungspotenzial und deren Umweltgefährdung abschätzen zu können, sind vertiefte Abklärungen notwendig. Zur Verifizierung der Ergebnisse sind bei denjenigen Kompartimenten, bei welchen entsprechend erhöhte Schadstoffkonzentrationen festgestellt wurden, Messungen bei unterschiedlichen Niederschlags- und Trockenperioden durchzuführen. Im Hinblick auf künftig abzulagernde Abfälle sind Überlegungen zur Herkunft der Stoffe, aber auch deren Ausbreitung zu treffen. Gezielte Untersuchungen von einzelnen Abfallarten, wie beispielsweise Schlacke oder Filterasche, können Auskunft über deren Schadstoffpotenzial geben. Weiter ist zu überlegen, welche organischen Schadstoffe in das jährliche Monitoringprogramm des Deponiesickerwassers aufzunehmen sind. Als prioritärer Schadstoff mit ubiquitärer Verbreitung wurden die perfluorierten Substanzen direkt ins Standardmonitoring übertragen. Sie werden bereits regelmässig überwacht. Zur vertieften Abklärung der tatsächlichen Gefährdung für den jeweiligen Vorfluter sind zusätzlich ökotoxikologische Untersuchungen hilfreich. Ebenso sind zur besseren Gefährdungsbeurteilung weitere chemisch-analytische Untersuchungen des Wassers bei der ARA (Input / Output) oder direkt im Vorfluter durchzuführen. Damit sind konkretere Aussagen zur tatsächlichen Gefährdung von Tieren und Pflanzen im Vorfluter möglich. In einem nächsten Schritt müssen für die Kompartimente mit periodisch erhöhten Schadstoffkonzentrationen in Sickerwässern Massnahmen zwecks Reduktion der Schadstofffreisetzung und/oder Nachsorgekonzepte erstellt werden, welche diesen Befund berücksichtigen.

1. Einleitung

1.1. Ausgangslage

Für nicht verwertbare Abfälle sind sichere Senken bereitzustellen. Sind die Abfälle emissionsarm oder gänzlich frei von Emissionen, ist ein nachsorgefreies Deponieren in letzten sicheren Senken möglich. Ist mit austretenden Schadstoffen zu rechnen, ist vor einer Deponierung das Freisetzungspotenzial der Schadstoffe in den Abfällen zu minimieren. Die Abfälle sind gemäss dem Stand der Technik (SdT) abzureichern, zu zerstören oder zu immobilisieren, so dass gemäss kantonalem Abfallgesetz § 2 [1] möglichst endlagerungsfähige Stoffe verbleiben. Je nach seiner Zusammensetzung und Schadstoffkonzentration wird ein Abfall in einer der fünf Deponietypen (Typ A bis Typ E) gemäss Verordnung über die Vermeidung und die Entsorgung von Abfällen (Abfallverordnung, VVEA) [2] abgelagert. Das Gefährdungspotenzial der dort abgelagerten Abfälle nimmt dabei in aufsteigender Reihenfolge zu. Deponien des Typ A sind für unverschmutztes Boden- und Aushubmaterial bestimmt. Sie sind per se nachsorgefrei und das Sickerwasser unproblematisch. Der Kanton Zürich verfügt gegenwärtig über keine Typ A Deponien, sondern lediglich über Materialabbaustellen. Da angenommen wird, dass sie in Bezug auf Schadstoffbelastungen unbedenklich sind, stehen sie nicht im Fokus dieser Abklärungen. Auf Deponien des Typs B lagern schwach verschmutztes Aushubmaterial, wenig belasteter Boden sowie andere mineralische Bauabfälle, die nicht verwertet werden können. Das Schadstoffpotenzial ist gering. Typ C Deponien enthalten anorganische und schwerlösliche Rückstände aus Industrie wie Strahlsande, Giesssande und andere restmetallhaltige Abfälle. Schlacken aus Kehrrichtverbrennungsanlagen (KVA) und Verbrennungsrückstände wie Filterasche und Bett-/Rostasche werden in Typ D Deponien abgelagert. Deponien des Typ E enthalten ein breiteres Spektrum an Abfällen, zum Beispiel stark belasteten Aushub und Boden, Abfälle aus Abfallbehandlungsanlagen (Bauabfallsortierung, Bodenwaschanlagen) oder Bauabfälle (Asphalt mit PAK-Belastung und Asbest).

Ein kurzer Einblick in die Geschichte der Abfallgesetzgebung und Deponien zeigt die Vielfalt der Deponietypen und deren Abfälle. Mit der Einführung des kantonalen Gewässerschutzgesetzes ab den 1975er Jahren wurden erstmals geordnete Deponien betrieben. Diese Multikomponentendeponien dienten zur Ablagerung von Abfällen, die nicht verbrannt oder anderweitig verwertet werden konnten. Unterschiedliche Abfallarten mit verschiedenen Eigenschaften gelangten in ein und dasselbe Kompartiment. Mit der Einführung der Technischen Verordnung über Abfälle (TVA, 1991) [3] wurden die Deponien nach Inertstoff, Reststoff und Reaktorstoff eingeteilt und auf Bundesebene klare Anforderungen an Deponiestandorte sowie konkrete Bauvorschriften für die drei Deponietypen festgelegt. Gleichzeitig enthielt die Verordnung die ersten chemisch-physikalisch überprüfbaren Anforderungen an die zur Ablagerung erlaubten Abfälle. Die Ablagerung von Siedlungsabfällen und anderen brennbaren Abfällen wurde mit einer 1996 erfolgten Änderung der TVA ab dem Jahr 2000 verboten. 2010 änderte die TVA die Deponietypen, so dass ehemalige Reststoffkompartimente im Kanton Zürich neu als «Reaktor» eingestuft wurden. Mit der Einführung der VVEA 2016 [2] wurden die Vorschriften für die Deponien dem Stand der Technik (SdT) angepasst und fünf Deponietypen (Typ A bis Typ E) festgelegt sowie deren Abschluss und Nachsorge klarer geregelt.

Nach der Betriebsphase werden die Deponien mit einer Oberflächenabdeckung bzw. Rekultivierung abgeschlossen und die Nachsorgephase beginnt. Die Nachsorgedauer der Deponien hängt im Wesentlichen von der Schadstoffentwicklung im Sickerwasser ab. Je schneller ein Sickerwasser die Vorgaben für die Einleitung in ein Oberflächengewässer erreicht, desto kürzer fällt die Nachsorgedauer aus. Nach spätestens 50 Jahren sollen keine aktiven Massnahmen wie der Unterhalt von Entwässerungsanlagen mehr notwendig sein. Bezogen auf den wichtigsten Emissionspfad Wasser bedeutet dies, dass von einer abgeschlossenen Deponie dauerhaft keine schädlichen oder lästigen Einwirkungen auf nutzbares oder genutztes Grundwasser oder auf Oberflächengewässer ausgehen dürfen. Die Einleitung von Deponiesickerwasser muss dabei die gesetzlichen Anforderungen erfüllen. Diese sind als numerische Anforderungen in Anhang 3.2 (allgemeine Anforderungen) sowie Anhang 3.3 (spezifische Anforderungen an Deponien) der Gewässerschutzverordnung (GSchV) [4] definiert. Im Kanton Zürich wurden diesbezüglich standortspezifische Einleitbedingungen für Sickerwässer aus Deponien festgelegt, welche zusätzlich die Anforderungen an die Wasserqualität für Oberflächengewässer gemäss GSchV Anhang 2 berücksichtigen [5]. Bis zum Erreichen der erforderlichen Wasserqualität zur Einleitung in ein Oberflächengewässer wird das gefasste Deponiesickerwasser mit oder ohne Vorbehandlung auf kommunale Abwasserreinigungsanlagen (ARA) geführt. Davon betroffen sind die Deponien des Typ C, Typ D und Typ E. Deponien des Typ B können ihr Sickerwasser dank den wenig schadstoffhaltigen Abfällen mehrheitlich bereits während der Betriebsphase direkt in ein Oberflächengewässer einleiten. Seit 1990 wird das Deponiesickerwasser der Typen B bis E im Kanton Zürich in regelmässigen Untersuchungen überwacht. 2012 hat das AWEL das Überwachungskonzept überarbeitet, um mit zusätzlichen Spezialuntersuchungen ein allfälliges Gefahrenpotenzial der Deponien des Kantons Zürich zu eruieren. Neben den gesetzlich numerisch geregelten Parametern können potenziell unzählige weitere Stoffe im Sickerwasser vorhanden sein. Diesen wird in der GSchV in Anhang 1 und 2 [4] als verbale Anforderungen Rechnung getragen. Betreffend der Einleitung von Stoffen gelten folgende Grundsätze: Die Wasserqualität soll so beschaffen sein, dass im Wasser, in den Schwebstoffen und in den Sedimenten keine künstlichen, langlebigen Stoffe enthalten sind. Andere Stoffe, die Gewässer verunreinigen können und die durch menschliche Tätigkeiten ins Wasser gelangen können, dürfen keine nachteiligen Einwirkungen auf die Lebensgemeinschaften von Pflanzen, Tieren und Mikroorganismen und auf die Nutzung der Gewässer haben. Sie dürfen in Gewässern nur in nahe bei null liegenden Konzentrationen vorhanden sein, wenn sie dort natürlicherweise nicht vorkommen. Um diese Anforderungen zu überprüfen und eine Übersicht zur Relevanz von Deponiesickerwassern als Quelle von langlebigen oder toxikologisch problematischen Stoffen zu erlangen, muss die Überwachung der gesetzlich geregelten Stoffe neu überdacht und potenziell ausgeweitet werden. Bereits in früheren Deponiesickerwasser-Überwachungen im Kanton Zürich (2013-2016) [6]-[9] wurde festgestellt, dass über die Entwässerung moderner Deponien potenziell Schadstoffe in die Umwelt gelangen (Kapitel 1.3). Diese Substanzen geraten je nach Deponietyp entweder durch Direkteinleitung des Sickerwassers in einen nahegelegenen Vorfluter oder nach Durchlaufen einer ARA in die Gewässer, wo sich negative Konsequenzen für aquatische Organismen sowie längerfristig auch für Trinkwasserressourcen ergeben können. Zusätzlich zu den negativen Effekten auf Ökosysteme und die Wasserversorgung gefährden erhöhte Schadstoffgehalte in Deponiesickerwasser ihre kostengünstigere Direkteinleitung in Gewässer oder führen zu einer rechtlich nicht erlaubten langen Deponie-Nachsorgedauer.

Die vorliegenden Deponie-Untersuchungen sind in das AWEL-Projekt «Emerging Pollutants» eingebunden. Das Projekt untersucht das Auftreten und die Umweltrelevanz von Schadstoffen, welche durch den Wasserpfad austreten können. «Emerging Pollutants» (frei übersetzt: Auftauchende Schadstoffe) ist ein Sammelbegriff für verschiedene Substanzen mit unterschiedlichen Eigenschaften und Einsatzgebieten. Ihre Freisetzung in die Umwelt erfolgte meist über längere Zeiträume (mehrere

Jahrzehnte), ihre Toxizität oder ihr Vorkommen in der Umwelt wurde aber erst seit den 90er Jahren oder später, z.B. durch die Weiterentwicklung von Nachweismethoden mit tieferen Bestimmungsgrenzen, erkannt. Aufgrund des in den Gewässern auftretenden tiefen Konzentrationsbereichs (µg/loder ng/l-Bereich), werden Emerging Pollutants auch als «Mikroverunreinigungen» bezeichnet. Es handelt sich dabei um natürlich vorkommende oder synthetisch hergestellte Verbindungen. Viele von ihnen sind in der Umwelt schwer abbaubar oder weisen langlebige Transformationsprodukte auf. Die meisten Emerging Pollutants werden derzeit in Umweltüberwachungsprogrammen nicht routinemässig erfasst, obwohl sie ein hohes Potenzial aufweisen, in die Umwelt zu gelangen. Dort haben sie, nachgewiesenermassen oder möglicherweise, schädliche Auswirkungen auf Mensch und Umwelt. Aufgrund der potenziellen Auswirkungen von Emerging Pollutants auf aquatische Organismen oder Trinkwasserressourcen ist es wichtig, die Kenntnisse bezüglich ihrem Vorkommen, Verhalten und Verbleib im Kanton Zürich zu erfassen.

1.2. Vorgehen und Ziele

Aufbauend auf den vergangenen Spezialuntersuchungen sollten die Spezialuntersuchungen 2021 die aktuelle Situation von Deponiesickerwasser hinsichtlich ausgewählter Emerging Pollutants aufzeigen. Es sollte die Vielfalt der aus Deponien austretenden Stoffen, welche nicht in der routinemässigen Überwachung analysiert werden, möglichst vollständig darlegen. Von den Deponietypen wurden die Sickerwässer der Typen B bis E aus unterschiedlichen Deponiephasen (in Betrieb oder in Nachsorge) ins Untersuchungsprogramm aufgenommen (Kapitel 2.1). Auch ältere Deponien, sogenannte Multikomponentendeponien, welche vor Inkrafttreten der TVA 1991 errichtet wurden, wurden angeschaut. Insgesamt wurden 25 Deponiesickerwasser untersucht. Die Ergebnisse der Spezialuntersuchungen sollen zur Beantwortung folgender Fragestellungen dienen:

- Gelangen mit Sonderabfällen Schadstoffe in Deponien, die heute in relevanten Mengen über das Sickerwasser in die Umwelt ausgetragen werden?
- Gelangen mit Kunststoffen Schadstoffe in Deponien, die heute in relevanten Mengen über das Sickerwasser in die Umwelt ausgetragen werden (z.B. über TOC [total organischer Kohlenstoff] in Bauabfällen, unverbrannte Anteile in Schlacke, etc.)?
- Gelangen mit Bauabfällen Schadstoffe in Deponien, die heute in relevanten Mengen über das Sickerwasser in die Umwelt ausgetragen werden (z.B. über Oberflächenbeschichtungen wie Farben und Lacke inkl. deren Topfkonservierer, Biozide in Fassaden usw.)?

Eine vollständige Erfassung von Emerging Pollutants ist kaum möglich, da diese Bezeichnung unzählige verschiedene Substanzklassen und Stoffe beinhaltet. Für die Untersuchungen 2021 wurde deshalb in einem ersten Schritt über Literaturrecherchen und bereits vorhandener Messdaten (Kapitel 1.3) eine Stoffauswahl von potenziell problematischen Stoffen getroffen, welche aus Deponiesickerwasser austreten können. Weiter wurde die Stoffauswahl an einem Experten-Workshop reduziert und prioritär zu untersuchende Stoffklassen festgelegt [10] (Kapitel 2.2).

Bekannte Substanzen sollten quantitativ mittels Target Analysen bestimmt werden (Kapitel 2.3 und Methoden Anhang 1). Von Stoffen, welche in auffälligen Konzentrationen vorkommen, ist, wenn möglich, ihre Art und Herkunft zu beschreiben. Des Weiteren sollte untersucht werden, ob bestimmte Stoffklassen charakteristisch für einzelne Deponietypen (Typ B bis Typ E) sind und ob sich die Typen bezüglich Schadstoffbelastung unterscheiden. Dabei sollten besonders problematische und schwer

abbaubare Stoffe identifiziert werden, welche für zukünftige Untersuchungskampagnen oder in der regelmässigen Überwachung berücksichtigt werden müssen. Als Ergänzung wurde mit Screening Verfahren versucht, unbekannte Stoffe zu identifizieren, um eine qualitative Übersicht und Informationen über die Anzahl möglicher Stoffe zu erlangen. Betreffend Einleitung ins Oberflächengewässer heute (Typ B) bzw. nach Ende der Nachsorgedauer, sprich nach 50 Jahren (Typ C bis Typ E), ist es wichtig zu wissen, ob das Sickerwasser relevante Gehalte an schädlichen und/oder schwer abbaubaren Stoffen aufweist.

Die durchgeführten Spezialuntersuchungen stellen einmalige Untersuchungskampagnen dar. Die erzielten Resultate sind Momentaufnahmen und lassen keine Aussagen zum zeitlichen Verlauf der Konzentrationen zu. Sie weisen auf mögliche Belastungen der untersuchten Substanzen hin und geben erste Informationen zur möglichen Direkteinleitung des Deponiesickerwassers ins Oberflächengewässer sowie zur Einhaltung der Nachsorgedauer. Eine abschliessende Beurteilung der untersuchten Deponiesickerwasser ist nicht möglich. Bei Stoffen, welche in hohen Mengen mit dem Sickerwasser ausgetragen werden oder die aufgrund ihrer Toxizität negative Effekte auf die Gewässer haben könnten, sollen zukünftige Handlungswege zur Reduktion der Schadstoffe in den abzulagernden Abfällen aufgezeigt werden. Des Weiteren sollen hinsichtlich Deponiebewirtschaftung die Reduktion der Schadstofffreisetzung und deren Überwachung diskutiert werden.

1.3. Bisherige Untersuchungen

1.3.1. Spezialuntersuchung 2013

In der Spezialuntersuchung 2013 [6] lag der Schwerpunkt auf Elementen und Schwermetallen. Es wurde das Sickerwasser von 24 Deponie-Kompartimenten der Typen B bis E (in Betrieb und in Nachsorge) auf folgende Parameter analysiert: Antimon gesamt, Bor gesamt, Chromat gelöst [Chrom(VI)] und Cyanid frei. Zusätzlich wurde das Vorhandensein von Radionukliden (C-14, Co-60, Cs-137, H-3, I-131, K-40, Ra-226, Ra-228) sowie die allgemeinen Feldparameter (Temperatur, Leitfähigkeit, pH-Wert) untersucht.

Für Cyanid, Bor und die Radionuklide ergaben sich keine relevant erhöhten Konzentrationen im Deponiesickerwasser und somit kein Bedarf für weitere Untersuchungen. Die Antimon- und Chrom(VI)-Konzentrationen waren im Sickerwasser von einzelnen Kompartimenten erhöht, d.h. die gemessenen Konzentrationen lagen über dem jeweiligen Konzentrationswert (K-Wert) der Altlasten-Verordnung (AltIV) [11] bzw. im Einzelfall auch über dem Höchstwert der standortspezifischen Einleitbedingungen für Sickerwasser ins Gewässer [5]. Diese beiden Parameter wurden deshalb im Rahmen der Spezialuntersuchungen 2014/2015 erneut analysiert.

1.3.2. Spezialuntersuchungen 2014 / 2015

Die Spezialuntersuchungen 2014/2015 [7][8] fokussierten sich neben Elementen und Schwermetallen auch auf organische Substanzen. Es wurden 20 Deponie-Kompartimente der Typen B bis E (in Betrieb und in Nachsorge) untersucht. Neben Antimon gesamt, Chrom(VI) und den allgemeinen Feldparametern wurde folgendes Analysenprogramm festgelegt: adsorbierbare, organisch gebundene Halogene (AOX), polycyclische aromatische Kohlenwasserstoffe (PAK), Stickstoff-Schwefel-Sauerstoff-Heterozyklen (NSO-Heterozyklen), polychlorierte Biphenyle (PCB) und Bisphenol A. Ebenfalls wurde mittels gaschromatographischer Screeninganalyse (GC-MS) nach weiteren apolaren Substanzen gesucht.

Bei Antimon wurden die Messungen von 2013 bestätigt. Die Deponiesickerwasser zeigten ein zu den Vorjahreswerten vergleichbares Muster. Die Chrom(VI)-Messungen wiesen im Vergleich zu 2013 signifikante Unterschiede auf: Es lagen alle Messwerte unter der Bestimmungsgrenze. Da eine andere Analysenmethode verwendet wurde, lassen die Resultate auf ein analytisches Problem schliessen. Im GC-MS-Screening wurden einzelne AOX-Verbindungen wie Chlorbenzole und Perchlorethylen (Per) identifiziert. Diese Substanzen werden z.T. bereits in den bestehenden jährlichen Standardmonitorings analysiert. Für die PAK-Einzelsubstanzen, die NSO-Heterozyklen, PCB und Bisphenol A wurden keine erhöhten Konzentrationen gemessen, weshalb kein Bedarf für weitere Untersuchungen bestand. Mit dem GC-MS-Screening konnten in einzelnen Kompartimenten weitere apolare umweltrelevante Einzelsubstanzen identifiziert werden. Aufgrund der Häufigkeit des Auftretens und der Umweltrelevanz der Verbindungen wurde empfohlen, in weiteren Untersuchungskampagnen die Anilin-Verbindungen, die monocyclisch aromatischen Kohlenwasserstoffe (BTEX), die Chlorbenzole und die leichtflüchtigen Chlorkohlenwasserstoffe (LCKW) in sämtlichen Kompartimenten quantitativ zu bestimmen.

1.3.3. Ökotoxikologische Relevanz von Deponiesickerwasser 2016

Folgend auf die Spezialuntersuchungen 2013-2015 wurde im Jahr 2016 die ökotoxikologische Relevanz von Deponiesickerwasser untersucht [9]. Dazu wurden an acht Deponiesickerwasser verschiedener Deponie-Kompartimente (Typ B bis Typ E) ökotoxikologische Tests, wie aquatische Toxizität und biologische Abbaubarkeit, durchgeführt sowie die allgemeinen Feldparameter, gelöster organischer Kohlenstoff (DOC), verschiedene Ionen und Bisphenol A gemessen.

Das unterschiedliche Deponiesickerwasser der Deponietypen C bis E wurden aufgrund der Resultate als toxisch bis sehr toxisch eingestuft. Die Kompartimente des Deponietyp B wurden als nicht toxisch bis leicht toxisch beurteilt. Bei der hormonellen Wirkung konnte teilweise eine gute Korrelation mit der gemessenen Bisphenol A-Konzentration im Sickerwasser festgestellt werden. Ökotoxikologische Untersuchungen von Deponiesickerwasser wurden für die Beurteilung der Deponienachsorge als sinnvolle Ergänzung zur chemischen Analytik empfohlen. Wichtig ist allerdings eine Einstufung der Toxizität, um die Relevanz beurteilen zu können. Allerdings ist zu berücksichtigen, dass ökotoxikologische Untersuchungen mit Deponiesickerwasser-Proben nicht immer durchführbar sind, da z.B. Matrixeffekte oder reduzierende Verbindungen die Bestimmung der Toxizität stören können.

2. Methodik

2.1. Deponiestandorte

Für die Untersuchungskampagne 2021 wurden nicht nur die Sickerwässer aus verschiedenen Deponietypen, sondern auch Sickerwässer aus unterschiedlichen Deponiephasen ausgewählt. Einerseits wurden Sickerwässer von jungen Deponie-Kompartimenten, welche in Betrieb sind, mit Fokus auf deren Einleitung ins Oberflächengewässer respektive deren Zuführung in eine ARA betrachtet. Anderseits wurden alte, abgeschlossene Deponien (auch Multikomponentendeponien) berücksichtigt, um Erkenntnisse zur Nachsorgedauer zu erlangen. Gesamthaft wurden 25 Deponie-Kompartimente (Typ B bis Typ E) an 16 Deponiestandorten im Kanton Zürich durch die Bachema AG, Schlieren, beprobt (Tabelle 1). Das Deponiesickerwasser wurde aus bestehenden Probenahmesystemen entnommen. Vor Ort wurden Temperatur, pH-Wert, Leitfähigkeit und Sauerstoffgehalt der Sickerwässer bestimmt.

Tabelle 1: Übersicht der untersuchten Deponie-Kompartimente im Kanton Zürich.

Bezeichnung	Deponietyp	Status	Betriebszeitraum	Einleitung Sickerwasser
B01	В	Nachsorge	2001 – 2020	in Gewässer
B02	В	in Betrieb	2018 – heute	in Gewässer
B03	В	in Betrieb	2016 – heute	in ARA
B04	В	in Betrieb	2010 – heute	in Gewässer
B05	В	in Betrieb	2010 – heute	in Gewässer
C01	С	in Betrieb	2012 – heute	in ARA
C02	С	in Betrieb	1994 – heute	in ARA
C03	С	Nachsorge	1995 – 2004	in ARA
D01	D	in Betrieb	2001 – heute	in ARA
D02	D	in Betrieb	2012 – heute	in ARA
D03	D	Nachsorge	1988 – 2021	in ARA
D04	D	in Betrieb	1983 – heute	in ARA
D05	D	in Betrieb	1987 – heute	in ARA
E01	Е	Nachsorge	1976 – 2015	in ARA
E02	E	Nachsorge	1986 – 1999	in ARA
E03	E	Nachsorge	1995 – 2008	in ARA
E04	E	Nachsorge	1987 – 2004	in ARA

Bezeichnung	Deponietyp	Status	Betriebszeitraum	Einleitung Sickerwasser
E05	E	Nachsorge	1974 – 1991	in ARA
E06	Е	Nachsorge	1977 – 1998	in ARA
E07	Е	Nachsorge	1973 – 2012	in ARA
E08	Е	in Betrieb	2012 – heute	in ARA
E09	Е	Nachsorge	1988 – 2021	in ARA
E10	Е	in Betrieb	1983 – heute	in ARA
E11	Е	in Betrieb	1994 – heute	in ARA
E12	Е	Nachsorge	1972 – 1984	in ARA

2.2. Substanzauswahl / Workshop

Die Auswahl der in der Kampagne 2021 zu untersuchenden Substanzen erfolgte aufgrund der in den bisherigen Untersuchungen erzielten Erkenntnisse (Kapitel 1.3) und unter Einbezug von «neu» analytisch erfassbaren Schadstoffen. Zur Ermittlung von allenfalls relevanten Substanzklassen im Deponiesickerwasser wurden in einem ersten Schritt Studien zu Schadstoffen in Deponieabfällen [12] bzw. Deponiesickerwasser [13] und Analyseprogramme der Überwachung organischer Schadstoffe in Oberflächengewässern [14] konsultiert. Dabei wurden die folgenden potenziell zu untersuchenden Substanzklassen identifiziert:

Flammschutzmittel	Tenside	Chlorbenzole
Pestizide	Bisphenole	Halb- und Schwermetalle
Kraftstoffadditive	Thiazole	Organometallverbindungen
Weichmacher	Phenole	Korrosionsschutzmittel
Hormone / Arznei- / Betäubungs- / I	Körperpflegemittel	Per-/Polyfluorierte Substanzen
Polychlorierte Dibenzodioxine und I	Aniline	

Auf Basis der obigen Liste erfolgte im Rahmen eines Expertenworkshops eine Vorauswahl des umzusetzenden Analyseprogramms der Untersuchungskampagne [10]. Am Workshop nahmen Vertreter aus den Fachgebieten Abfallwirtschaft und Deponien, Altlasten, Oberflächengewässer, Schadstoffdynamik sowie Organische Analytik teil. Einige von ihnen haben bereits in Workshops zu früheren Spezialuntersuchungen [6]-[9] teilgenommen. Die Experten beurteilten für alle oben aufgeführten Substanzklassen die Wahrscheinlichkeit eines Vorkommens im Deponiesickerwasser aus abgelagerten Abfällen, die Toxizität sowie deren Analysierbarkeit. Auf Basis dieser Beurteilungen wurden folgende Verbindungen und Substanzklassen der «Emerging Pollutants» als prioritär zu untersuchen beurteilt:

Flammschutzmittel: Bromierte und Organophosphor-Flammschutzmittel

PCB, Phthalate

Thiazole, Bisphenole

Korrosionsschutzmittel

Per- und polyfluorierte Alkylsubstanzen (PFAS)

Die finalisierte Auswahl an zu untersuchenden Einzelsubstanzen wurde basierend auf der Liste von verbotenen Stoffen der Chemikalien-Risikoreduktions-Verordnung (ChemRRV) [15] und in Rücksprache mit den Labors in Bezug auf die Analysemethodik und Messbarkeit festgelegt. Zu den oben gelisteten «Emerging Pollutants» wurden aufgrund der Fragestellungen des Projektes weitere Verbindungen und Substanzklassen ins Analyseprogramm (z.T. nur qualitativ) aufgenommen: Aniline und Chloraniline, Acrylamid, Nonylphenol und Derivate, Phenole und Chlorphenole, Chlorbenzole, Nitroverbindungen und flüchtige organische Verbindungen (VOC) (Kapitel 2.3, Tabelle 2). Ebenso wurden typische Vertreter von Pestiziden, welche als Konservierungsstoffe in Baustoffen zur Anwendung kommen, für die Untersuchungen ausgewählt. Um durch die oben aufgeführten Substanzklassen nicht abgedeckte Substanzen zu identifizieren und möglichst vollständige qualitative Informationen zur stofflichen Belastung der unterschiedlichen Sickerwässer zu erhalten, wurde zusätzlich ein Screening der Sickerwässer mit gas- und flüssigchromatographischen Methoden (GC-MS und LC-HRMS) herangezogen.

2.3. Analytische Methoden

Die Analytik der Sickerwasserproben wurde durch drei verschiedene Laboratorien durchgeführt. Die quantitativen Analysen erfolgten in den Labors der Bachema AG, Schlieren, der Eidgenössischen Materialprüfungs- und Forschungsanstalt (EMPA), Dübendorf, und dem AWEL Gewässerschutzlabor (GS-Labor), Zürich. Insgesamt wurden 265 organische Substanzen und drei Summenparameter quantitativ bestimmt. Tabelle 2 zeigt eine Übersicht über die quantitativ untersuchten Substanzklassen und Produktkategorien. In Anhang 1 sind die detaillierten Methoden beschrieben.

Tabelle 2: Übersicht der quantitativ untersuchten Substanzklassen.

Substanzklasse / Produktkategorie	# Substanzen	Labor
Bromierte Flammschutzmittel	17	EMPA
Organophosphor-Flammschutzmittel	7	EMPA
Polychlorierte Bisphenyle (PCB) (Summenparameter)	keine Angaben	AWEL GS-Labor
Phthalate	6	Bachema AG
Nonylphenole (Summenparameter)	keine Angaben	Bachema AG
Thiazole	5	Bachema AG
Bisphenole	3	Bachema AG

Substanzklasse / Produktkategorie	# Substanzen	Labor	
Acrylamid	1	Bachema AG	
Per- und Polyfluorierte Alkylsubstanzen (PFAS)	13	Bachema AG	
Aniline und Chloraniline	24	Bachema AG	
Phenole und Chlorphenole	10	Bachema AG	
Chlorbenzole	7	Bachema AG	
Nitroverbindungen	6	Bachema AG	
Flüchtige organische Verbindungen (VOC)	56	Bachema AG	
Aliphatische Kohlenwasserstoffe C ₅ -C ₁₀ (Summenparameter)	keine Angaben		
Arzneimittel	_		
Pestizide	- 110	AWEL GS-Labor	
Süssstoffe			
Korrosionsschutzmittel	_		

Des Weiteren wurden im AWEL Gewässerschutzlabor gas- und flüssigchromatographische Screeninganalysen (GC-MS und LC-MS) durchgeführt und diese sowohl qualitativ als auch semiquantitativ ausgewertet. Zusätzlich wurde eine Non-Target Cluster-Analyse der untersuchten Sickerwässer durch die Firma enviBee GmbH angefertigt. Die detaillierten analytischen Methoden finden sich in Anhang 1.

2.4. Grundlagen Gefährdungsbeurteilung

Die Schutzziele im Gewässerschutz – einwandfreies Trinkwasser, Schutz der ober- und unterirdischen Gewässer, Verbesserung der Wasserqualität – sowie die Gewässerschutzgesetzgebung bilden die Grundlage für die Beurteilung der Qualität von Deponiesickerwasser und den Entscheid über deren Einleitung in einen Vorfluter. Die beiden ausschlaggebenden Parameter für die Beurteilung sind die Anforderungen an das Sickerwasser (Einleit-Grenzwerte Gewässer Anhang 3.2 GSchV [4]) sowie die Qualitätsziele für Oberflächengewässer (Anhang 2 GSchV [4]). Sind keine Einleit-Grenzwerte ins Gewässer gemäss Anhang 3.2 GSchV festgelegt, wird der zehnfache K-Wert Anhang 1 AltIV [11] als Höchstwert für das Sickerwasser herangezogen [5]. Dieser Wert entspricht in etwa dem Typ E-Abfallgrenzwert im Eluat. Die Konzentration eines Stoffs im Sickerwasser darf den Höchstwert für Sickerwasser nicht übersteigen und die Zielvorgaben für Oberflächengewässer müssen nach Einleitung des Deponiesickerwassers und der vollständigen Durchmischung im Vorfluter eingehalten werden (*Abbildung* 1). Sobald das Sickerwasser diese beiden Kriterien erfüllt, darf es ohne weitere Vorbehandlung in den Vorfluter eingeleitet werden. Gemäss VVEA soll grundsätzlich nach spätestens 50 Jahren Nachsorgedauer das Deponiesickerwasser, auch Deponien der Typen C bis E, diese Anforderungen erfüllen.

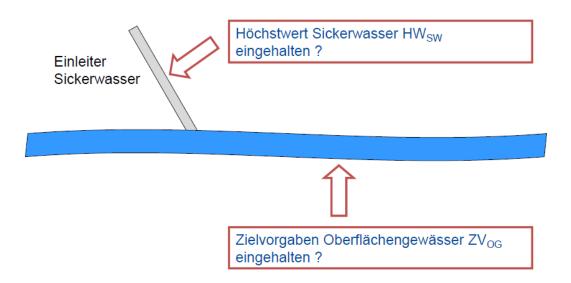


Abbildung 1: Standortspezifische Einleitbedingungen für Sickerwässer aus Deponien (AWEL, 2013) [5].

Für einen grossen Teil der im Rahmen dieser Arbeit detektierten oder untersuchten Stoffe sind in den Anhängen 3.2 GSchV [4] und 1 AltlV [11] für die Beurteilung der Sickerwässer keine Grenzwerte festgelegt. Dies betrifft insbesondere die Gruppe der Pestizide, Arzneimittel und Süssstoffe. Für diese Substanzen kann die Zielvorgabe für Oberflächengewässer (Anhang 2 GSchV) als Richtwert verwendet werden, wobei auch für diese, abgesehen von Pestiziden und einigen ausgewählten Arzneimitteln, keine numerischen Anforderungen definiert sind. Dies bedeutet, dass eine rechtliche Beurteilung der hier untersuchten Sickerwässerqualität nur an einer begrenzten Stoffauswahl vorgenommen werden kann.

Allgemein gelten für sämtliche Einleitungen von Stoffen ins Gewässer die ökologischen Ziele gemäss Anhang 1 GSchV [4]. Diese besagen, dass die Wasserqualität so beschaffen sein soll, dass im Wasser, in den Schwebstoffen und in den Sedimenten keine künstlichen, langlebigen Stoffe enthalten sind. Andere Stoffe, die Gewässer verunreinigen können und die durch menschliche Tätigkeit ins Wasser gelangen können, dürfen in Pflanzen, Tieren, Mikroorganismen, Schwebstoffen oder Sedimenten nicht angereichert werden. Sie dürfen keine nachteiligen Einwirkungen auf deren Lebensgemeinschaften und auf die Nutzung der Gewässer haben.

Für eine grosse Anzahl an Substanzen, welche in der hier beschriebenen Untersuchung gefunden wurde, kann gemäss ökotoxikologisch basierten Qualitätskriterien für Oberflächengewässer oder GHS-Kriterien (Global harmonisiertes System für die Einstufung von Chemikalien) eine umweltgefährdende Wirkung nicht ausgeschlossen werden. Für diese gilt es im Einzelfall zu prüfen, ob die ökologischen Ziele für Gewässer gemäss Anhang 1 GSchV eingehalten werden.

Da in diesen Regelwerken von den in der Spezialuntersuchung 2021 analysierten Schadstoffen nur hinsichtlich Bisphenol A, Pentachlorphenol und summarische Werte für BTEX und LCKW Grenzwerte definiert sind, wurde für die Gefährdungsbeurteilung der Schadstoffkonzentrationen des Deponiesickerwassers auf weitere in- und ausländische Verordnungen bzw. Beurteilungswerte Bezug genommen:

- Konzentrationswerte (K-Werte) gemäss Anhang 1 der Altlasten-Verordnung (AltIV) [11] sowie Liste des Bundesamts für Umwelt (BAFU) für standortspezifisch hergeleitete «Konzentrationswerte für Stoffe, die nicht in Anhang 1 oder 3 AltIV enthalten sind» [21].
- Verordnung des EDI über Trinkwasser sowie Wasser in öffentlich zugänglichen Bädern und Duschanlagen (TBDV) [16].
- Screening Level der U.S. Environmental Protection Agency (EPA) [17]
 Die Screening Level werden zur Risikoabschätzung der Schadstoffaufnahme durch Menschen genutzt. Annahme: lebenslange Exposition (= 25-30 Jahre), gültig für alle Menschen inkl. sensible Gruppen. Die Screening Level sind für verschiedene Kompartimente (Umgebungsluft, Luft am Arbeitsplatz, Trinkwasser, Grundwasser, Boden) definiert.
- Predicted No Effect Concentration (PNEC) [18]
 PNEC werden zur Risikoabschätzung der Schadstoffauswirkung auf die Umwelt genutzt.
 PNEC ist die vorausgesagte Konzentration eines umweltgefährlichen Stoffes, bis zu der sich keine Auswirkungen auf die in dem jeweiligen Umweltmedium lebenden Organismen zeigen.

Auch nach Beizug obiger Verordnungen konnten nicht alle untersuchten Einzelsubstanzen mit Beurteilungswerten verglichen werden. Für mehr als die Hälfte der 265 quantitativ untersuchten Einzelsubstanzen waren keine Beurteilungswerte verfügbar (Anhang 2).

3. Resultate und Gefährdungsbeurteilung

3.1. Quantitative Analytik

Im nachfolgenden Kapitel sind die Resultate der quantitativen Analysen zusammenfassend dargestellt. Die detaillierten Resultate sind der Übersichtstabelle in Anhang 2 zu entnehmen.

Von den 265 untersuchten Einzelsubstanzen sind 80 in mindestens einer Probe nachgewiesen worden. Die Konzentrationen der restlichen 185 Substanzen lagen in allen Proben unterhalb der jeweiligen Bestimmungsgrenzen. *Abbildung 2* zeigt, dass in den einzelnen Sickerwasser-Proben zwischen 22 und 80 Einzelsubstanzen quantifiziert wurden. Es ist kein Zusammenhang zwischen der Anzahl Einzelsubstanzen oberhalb der Bestimmungsgrenze und dem entsprechenden Deponietyp (geordnet von Typ B bis Typ E auf der x-Achse) bzw. dem Deponiestatus (in den nachfolgenden Abbildungen als 'in Betrieb' = blau und 'in Nachsorge' = grau markiert) erkennbar.

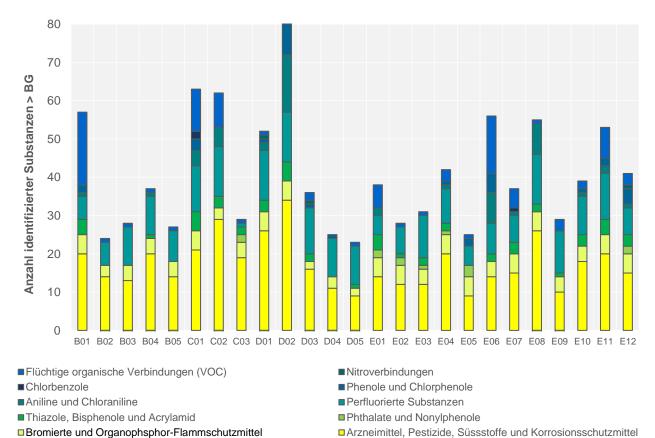


Abbildung 2: Anzahl der detektierten Einzelsubstanzen nach Substanzklasse oder Produktkategorie je untersuchtes Deponie-Kompartiment.

In Abbildung 2 wird ebenfalls die Anzahl der quantifizierten Einzelsubstanzen nach Substanzklassen dargestellt. In Verbindung mit der Übersichtstabelle in Anhang 2 zeigt sich, dass in den Sickerwässern aller Kompartimente PFAS (1-13 Einzelsubstanzen), VOC (1-19 Einzelsubstanzen) sowie Organophosphor-Flammschutzmittel (3-6 Einzelsubstanzen) nachgewiesen wurden. Die übrigen untersuchten Substanzklassen wurden nicht in allen Kompartimenten nachgewiesen.

3.2. Resultate pro Substanzklasse

Bromierte und Organophosphor Flammschutzmittel

Bromierte Flammschutzmittel konnten in keinem der untersuchten Deponiesickerwasser festgestellt werden. Die Bestimmungsgrenzen waren je nach Einzelsubstanz und Matrix unterschiedlich und lagen zwischen 0.2 und 50 ng/l. Daher ist nicht auszuschliessen, dass in den untersuchten Deponiesickerwasserproben bromierte Flammschutzmittel im tiefen ng/l-Bereich vorhanden sind. In einer vergleichbaren Untersuchung des Umweltbundesamts Österreich [13] wurden in Deponiesickerwassern bromierte Flammschutzmittel in Konzentrationen bis 0.2 µg/l gemessen.

Die gut wasserlöslichen Organophosphor-Flammschutzmittel wurden in allen Deponiesickerwassern in summarischen Konzentrationen zwischen 0.03-3.9 µg/l nachgewiesen (*Abbildung 3*).

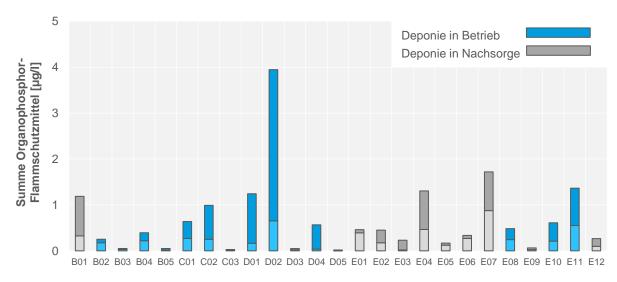


Abbildung 3: Summenkonzentrationen von Organophosphor-Flammschutzmitteln je untersuchtes Deponie-Kompartiment. Dunkle Balken: Konzentrationen an TCPP, helle Balken: Summe ohne TCPP.

Das Sickerwasser des Kompartiments D02 zeigte mit 3.9 µg/l die höchste Summen-Konzentration. In allen weiteren Sickerwässern wurden Summen-Konzentrationen zwischen 0.03-1.7 µg/l festgestellt. Die Einzelverbindung Tris(chlorpropyl)phosphat (TCPP, in *Abbildung 3* in dunkler Farbe dargestellt), ein Flammschutzmittel, welches v.a. in Kunststoffen eingesetzt wird, zeigt meist die höchsten Konzentrationen in den Sickerwässern (0.01-3.3 µg/l). Verglichen mit dem EPA-Wert für Trinkwasser von 190 µg/l [17] sind die vorgefundenen Konzentrationen allerdings gering. Für drei weitere Flammschutzmittel (TnBP, TCEP, TDCPP) existieren ebenfalls EPA-Trinkwasserwerte. Diese werden in den Sickerwässern stark unterschritten. Gemäss der Tabelle des BAFU mit K-Werten für Stoffe, wel-

che nicht in Anhang 1 AltIV enthalten sind [21] wurden in den letzten Jahren für zwei Organophosphor-Flammschutzmittel standortspezifisch K-Werte hergeleitet (TnBP = 350 μ g/l, TCEP = 18 μ g/l). Die gemessenen Konzentrationen von TnBP (0.01-0.33 μ g/l) und TCEP (0.01-0.17 μ g/l) unterschreiten die K-Werte ebenfalls um ein Vielfaches.

PCB, Phthalate und Nonylphenole

Phthalate und PCB sind typische Weichmacher und werden in vielen Alltagsprodukten verarbeitet. In keinem der untersuchten Deponie-Kompartimente konnten PCB-Konzentrationen über der Bestimmungsgrenze gemessen werden.

In den untersuchten Sickerwässern wurden in einem Kompartiment Typ C und sechs Kompartimenten Typ E Phthalate in summarischen Konzentrationen zwischen 0.1-0.8 µg/l festgestellt. Von den sechs analysierten Phthalat-Einzelsubstanzen wurden allerdings nur Diethyl-phthalat und Bis(2-ethylhexyl)phthalat über der Bestimmungsgrenze von 0.1 µg/l gemessen. Für beide Substanzen wurden gemäss BAFU-Liste [21] K-Werte von 12'000 µg/l respektive 700 µg/l hergeleitet. Diese Werte wurden demnach in den untersuchten Sickerwässern in Grössenordnungen unterschritten.

Nonylphenole sind eine Mischung aus zahlreichen strukturisomeren und stereoisomeren chemischen Verbindungen mit identischer Summenformel. Sie werden in verschiedensten Produkten eingesetzt, wobei ihr Einsatz in der ChemRRV stark reglementiert ist. Nonylphenole wurden in der vorliegenden Untersuchung als Summenparameter mit einer Bestimmungsgrenze von 0.05 µg/l erfasst und in 12 Deponie-Kompartimenten nachgewiesen. Die Konzentrationen liegen zwischen 0.06-18.7 µg/l (*Abbildung 4*). Die Sickerwässer der Kompartimente C01, D02 und E06 zeigten mit 5.0 µg/l, 1.9 µg/l und 18.7 µg/l die höchsten Konzentrationen. In allen weiteren Sickerwässern wurden Konzentrationen zwischen 0.32-0.94 µg/l festgestellt.

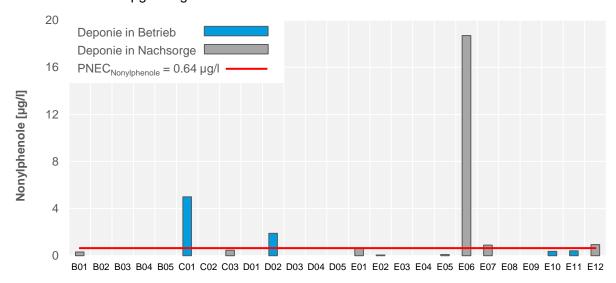


Abbildung 4: Konzentrationen von Nonylphenolen je untersuchtes Deponie-Kompartiment.

Nonylphenole wurden bereits in der Untersuchungskampagne 2014 untersucht [6]. Die maximal gemessene Konzentration war damals mit 0.39 µg/l (semiquantitative Auswertung des GC-MS Screenings) deutlich tiefer als in der jetzigen Untersuchungskampagne mit 18.7 µg/l in E06. Hinsichtlich Beurteilung konnte nur eine abgeschätzte PNEC von Frischwasser von 0.64 µg/l [19] (rote Linie in

Abbildung 4) gefunden werden, welcher in den Sickerwässern der Kompartimente C01, D02, E06, E07 und E12 überschritten ist.

Thiazole, Bisphenole und Acrylamid

Thiazole werden in grossen Mengen als Vulkanisationsbeschleuniger und Alterungsschutzmittel bei der Gummiherstellung verwendet. Die gemessenen Einzelsubstanzen werden als Summe der Konzentrationen aller gemessenen Thiazole in *Abbildung 5* dargestellt. Thiazole wurden in 18 Sickerwässern in summarischen Konzentrationen zwischen 0.1-20 μ g/l nachgewiesen. Dabei zeigten die Sickerwässer der Kompartimente C01 (13.6 μ g/l) und D02 (20 μ g/l) deutlich höhere Konzentrationen als die restlichen Sickerwässer. Als Beurteilungswert kann für 2-Mercaptobenzothiazol der Regional Screening Level für Trinkwasser (6.3 μ g/l, rote Linie in *Abbildung 5*) herangezogen werden. Dieser wurde im Sickerwasser der Kompartimente C01 und D02 überschritten.

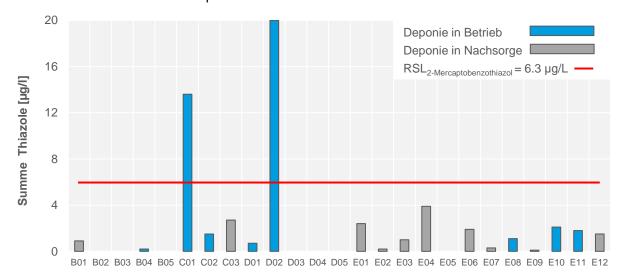


Abbildung 5: Thiazol-Summenkonzentrationen je untersuchtes Deponie-Kompartiment.

Bisphenole werden in der Industrie zur Herstellung von Kunststoffen und Harzen verwendet. Bisphenol A, Bisphenol F und Bisphenol S wurden in 13 Deponien in summarischen Konzentrationen zwischen 0.1-15'100 µg/l nachgewiesen (Abbildung 6). Die Sickerwässer der Kompartimente C01 (15'100 µg/l, hauptsächlich Bisphenol F) und D02 (7'355 µg/l, hauptsächlich Bisphenol A) zeigten mit Abstand die höchsten Konzentrationen im Vergleich zu den anderen Sickerwässern (max. 9.5 µg/l in D03, hauptsächlich Bisphenol A). In den meisten Sickerwässern, mit Ausnahme desjenigen des Kompartiments C01, war Bisphenol A die dominierende Spezies. Bereits in der Untersuchungskampagne 2014 wurde Bisphenol A untersucht [7]. Die maximal gemessene Konzentration war damals mit 550 μg/l (in C01) deutlich tiefer als in der vorliegenden Kampagne (7'355 μg/l in D02). Es wurden teilweise höhere (4 Kompartimente) und teilweise tiefere (10 Kompartimente) Bisphenol A-Konzentrationen festgestellt als in der Kampagne 2014. Grosse Konzentrationsschwankungen im Deponiesickerwasser sind wesentlich von den Probenahmebedingungen beeinflusst und daher keine Ausnahme. Bei anderen Deponiesickerwasseruntersuchungen in der Schweiz wurden Bisphenol A-Konzentrationen in ähnlichen Grössenordnungen, bis max. 4'200 µg/l nachgewiesen [20]. Für die im Kanton Zürich definierten Werte für die standortspezifische Einleitung in ein Oberflächengewässer ist für das Sickerwasser aus Deponien keine Anforderung für Bisphenol A festgelegt [5]. Für das Oberflächengewässer liegt die Zielvorgabe für Bisphenol A bei 1.0 µg/l [4].

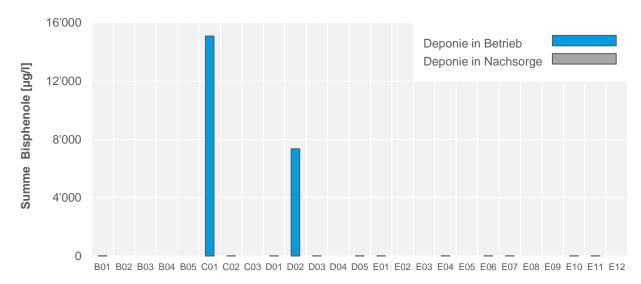


Abbildung 6: Summenkonzentrationen Bisphenole (A, F und S) je untersuchtes Deponie-Kompartiment.

Acrylamid wurde in keinem Deponie-Kompartiment über der Bestimmungsgrenze von 0.1 µg/l nachgewiesen.

Per- und Polyfluorierte Alkylsubstanzen (PFAS)

PFAS ist eine Substanzklasse, die aufgrund ihrer technischen Eigenschaften (wasser- und fettabweisend, thermisch sehr stabil) in zahlreichen industriellen Prozessen und Produkten eingesetzt wird, so z.B. in der Produktion von Textilien, Elektronik, Papierbeschichtungen, Farben, Feuerlöschschäumen, Skiwachs, usw.. Aufgrund der Erkenntnisse des nationalen PFAS-Projektes des BAFU im Bereich Altlasten und Abfallwirtschaft werden zurzeit die folgenden neun PFAS-Einzelsubstanzen als Summe beurteilt: Perfluorbutansäure (PFBA), Perfluorpentansäure (PFPeA), Perfluorhexansäure (PFHxA), Perfluorheptansäure (PFHxA), Perfluoroctansäure (PFNA), Perfluorbutansulfonsäure (PFNA), Perfluorbutansulfonsäure (PFBS), Perfluorhexansulfonsäure (PFHxS), Perfluoroctansulfonsäure (PFOS). Für die Summenbildung werden die Einzelsubstanzen nach ihrer Toxizität (TEQ = Toxizitätsäquivalent) gewichtet und addiert [22]. Gemäss Liste des BAFU [21] liegt der aktuelle standortspezifische K-Wert AltIV bei 0.05 μg TEQ/I für die Summe der neun definierten PFAS-Einzelsubstanzen.

PFAS wurden in allen 25 Sickerwässern nachgewiesen. Es wurden toxizitätsgewichtete Summen-Konzentrationen zwischen 0.03-7.6 µg TEQ/I gemessen (*Abbildung 7*), wobei nur das Sickerwasser aus Deponie C03 den K-Wert nicht überschreitet. Es ist weder eine dominierende PFAS-Einzelsubstanz noch eine Korrelation der PFAS-Konzentrationen mit dem Kompartiments-Typ oder Kompartiments-Status erkennbar. Der zehnfache K-Wert AltIV (rote Linie in *Abbildung 7*) wird für 17 Kompartimente mit einem maximalen Faktor 15 überschritten.

Zu den neun PFAS-Einzelsubstanzen wurden zusätzlich Perfluorpentansulfonsäure (PFPeS, 0.01- $0.42~\mu g/l$), Perfluorheptansulfonsäure (PFHpS, 0.01- $0.14~\mu g/l$), Perfluordecansäure (PFDA, 0.01- $0.07~\mu g/l$) sowie die polyfluorierte 6:2-Fluortelomersulfonsäure (6:2-FTS, 0.02- $1.52~\mu g/l$) analysiert. Für diese Substanzen wurden keine Beurteilungswerte gefunden.

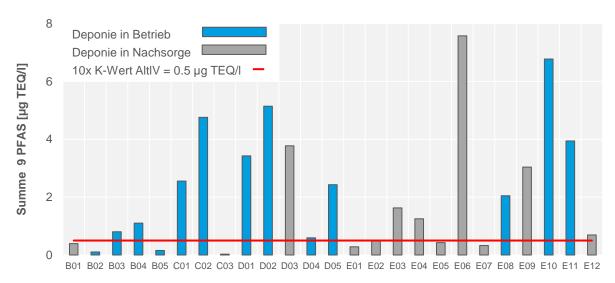


Abbildung 7: Toxizitätsgewichtete Summenkonzentrationen der 9 PFAS je untersuchtes Deponie-Kompartiment

Aniline und Chloraniline

Aniline und Chloraniline dienen in der chemischen Industrie in erster Linie als Ausgangsstoffe für die Synthese von Farben und Kunstfasern, aber auch zur Herstellung von Polymeren, Gummi und Medikamenten. Die Sickerwässer der vorliegenden Untersuchung wurden auf insgesamt 24 Einzelsubstanzen analysiert. In 13 Sickerwässern wurden Aniline und Chloraniline in summarischen Konzentrationen zwischen 0.1-208 µg/l nachgewiesen (*Abbildung 8*). Dabei zeigten die Kompartimente C01 (11 µg/l), D02 (208 µg/l), E06 (4.4 µg/l) und E08 (4.7 µg/l) deutlich höhere Konzentrationen als andere Sickerwässer. In der Untersuchungskampagne aus dem Jahr 2014/2015 wurden Aniline bereits untersucht [7][8]. Die damals maximal gemessene Konzentration von 0.74 µg/l (semiquantitative Auswertung des GC-MS Screenings) ist deutlich tiefer als die höchsten Konzentrationen in der vorliegenden Kampagne.

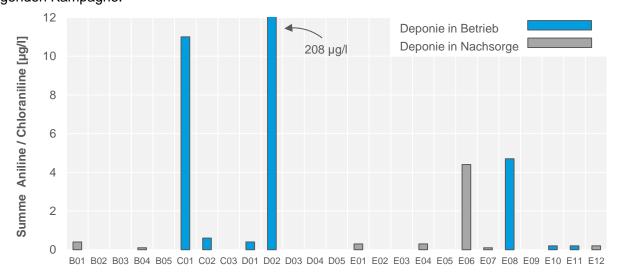


Abbildung 8: Anilin- und Chloranilin-Summenkonzentrationen je untersuchtes Deponie-Kompartiment.

Für Anilin und 4-Chloranilin sind K-Werte von 50 μ g/l respektive 100 μ g/l vorhanden [11]. Diese Werte wurden nicht überschritten. Ebenfalls sind in der Liste des BAFU [21] für weitere Einzelsubstanzen K-Werte (von 0.9-100 μ g/l) gelistet. Einzig das Sickerwasser des Kompartiments D02 überschreitet die K-Werte für 4/5-Chlor-2-Methylanilin (4 μ g/l), 2,4-Dimethylanilin (2 μ g/l), 0-Toluidin (20 μ g/l) und p-Toluidin (10 μ g/l) um bis zu Faktor 6.

Für gewisse Einzelsubstanzen dieser Substanzklasse sind PNEC vorhanden [18], welche in der *Tabelle 3* zusammengefasst sind. In der Tabelle sind ebenfalls diejenigen Deponie-Kompartimente aufgelistet, bei welchen die PNEC-Werte überschritten sind. Zum Teil sind diese Überschreitungen mit bis zu Faktor 250 sehr hoch.

Tabelle 3: PNEC (predicted no effect concentration) für Aniline und Chloraniline.

Einzelsubstanz	PNEC Süsswasser	Konzentrationen Deponiesickerwasser
Anilin	1.5 μg/l	C01 (7 µg/l), D02 (42 µg/l), E06 (1.8 µg/l)
4/5-Chlor-2-Methylanilin	0.62 μg/l	D02 (24 μg/l), E08 (2 μg/l)
4-Chloranilin	1.0 μg/l	D02 (7 μg/l)
3,4-Dichloranilin	0.02 μg/l	D02 (4 μg/l), E08 (0.2 μg/l)
m-Toluidin	0.10 μg/l	D02 (5 μg/l), E01 (0.2 μg/l), E06 (0.9 μg/l)
o-Toluidin	0.252 μg/l	D02 (29 μg/l), E06 (0.7 μg/l)
p-Toluidin	0.12 μg/l	C01 (1 µg/l), D02 (30 µg/l), E06 (0.3 µg/l)

Phenole und Chlorphenole

Phenole werden häufig als Ausgangsstoffe zur Herstellung von Kunststoffen verwendet. In der vorliegenden Untersuchung wurden zehn Phenol-Einzelsubstanzen analysiert. Summarisch konnten in zwölf Sickerwässern Phenole festgestellt werden. Dabei wurden Konzentrationen zwischen 0.1-4'588 μ g/l gemessen (*Abbildung 9*). Die Sickerwässer der Kompartimente C01 (4'588 μ g/l), D02 (246 μ g/l), E06 (57 μ g/l) und E12 (15 μ g/l) zeigten massiv höhere Konzentrationen im Vergleich zu den anderen Sickerwässer mit maximalen Konzentrationen von 2.1 μ g/l. Phenole wurden in der Untersuchungskampagne 2014/2015 bereits untersucht [7][8]. Die maximal gemessene Konzentration war damals mit 59 μ g/l (semiquantitative Auswertung des GC-MS Screenings) um Grössenordnungen tiefer als in der vorliegenden Kampagne. Für die Mehrheit der analysierten Phenole existieren AltIV K-Werte [11]. Diese liegen zwischen 1 μ g/l für Pentachlorphenol und 10'000 μ g/l für Phenol. Einzig im Deponie-Kompartiment C01 wurde der K-Wert für p-Kresol (200 μ g/l) mit einer Konzentration von 251 μ g/l schwach überschritten.

Für Phenole wurden ebenfalls PNEC zusammengetragen [18]. Diese sind in *Tabelle 4* zusammen mit denjenigen Deponie-Kompartimenten, welche die jeweiligen PNEC überschreiten, gelistet. Die Überschreitungen sind teils sehr hoch. Vor allem das Kompartiment C01 zeigt stark erhöhte Werte, welche bis zu Faktor 545 über der PNEC liegen.

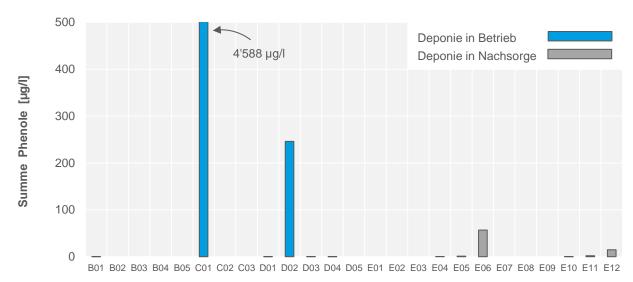


Abbildung 9: Phenol-Summenkonzentrationen je untersuchtes Deponie-Kompartiment.

Tabelle 4: PNEC (predicted no effect concentration) für Phenole.

Einzelsubstanz	PNEC Süsswasser	Konzentrationen Deponiesickerwasser
Phenol	7.7 μg/l	C01 (4'210 µg/l), D02 (61 µg/l), E06 (40 µg/l)
2-Chlorphenol	6.0 μg/l	D02 (75 μg/l)
Pentachlorphenol	0.1 μg/l	D01 (0.2 μg/l)
2,4-Dimethylphenol	2.2 μg/l	D02 (5 μg/l), E06 (2.6 μg/l)
o-Kresol	12 μg/l	C01 (127 µg/l), D02 (41 µg/l)
p-Kresol	100 µg/l	C01 (251 µg/l)

Chlorbenzole

Chlorbenzole werden in diversen industriellen Prozessen eingesetzt und entstehen auch als Zwischen- und Nebenprodukte bei der Herstellung von Insektiziden, Farbstoffen, Arzneimitteln und Duftstoffen. In der vorliegenden Untersuchung wurden die Deponie-Sickerwässer auf sieben Einzelsubstanzen analysiert. Chlorbenzole wurden ausschliesslich in den Sickerwässern der Kompartimente C01, D02 und E07 in summarischen Konzentrationen zwischen 0.06-3.2 µg/l festgestellt. Diese Substanzklasse wurde ebenfalls in der Untersuchungskampagne 2014/2015 untersucht [7][8]. Die maximal gemessene Konzentration war damals mit 0.93 µg/l (semiquantitative Auswertung des GC-MS Screenings) in einer ähnlichen Grössenordnung wie in der jetzigen Kampagne. In der AltIV sind für alle Chlorbenzole K-Werte vorhanden [11], welche für keine Einzelsubstanz überschritten wurden. Auch gibt es für alle analysierten Einzelsubstanzen entsprechende PNEC, welche ebenfalls alle stark unterschritten wurden.

Nitroverbindungen

Aromatische Nitroverbindungen wurden in grossen Mengen bei der Produktion von Sprengstoffen eingesetzt. In der vorliegenden Untersuchung wurden die Sickerwässer auf sechs Einzelsubstanzen analysiert. In den Sickerwässern der Kompartimente D01, D03 und E12 wurden relativ tiefe summarische Konzentrationen von 0.1- $0.2~\mu g/l$ festgestellt. Das Sickerwasser aus dem Deponie-Kompartiment D02 hingegen weist mit 50 $\mu g/l$ die mit Abstand höchste summarische Konzentration an Nitroverbindungen auf. 2,4-Dinitrophenol ist die einzig nachgewiesene Verbindung. Dessen K-Wert gemäss AltlV [11] beträgt 50 $\mu g/l$ und wurde somit gerade erreicht.

Flüchtige organische Verbindungen (VOC)

Die verschiedenen Deponie-Sickerwässer wurden mittels der Purge-and-Trap-Analytik ebenfalls auf eine grosse Anzahl an VOC untersucht. Die Substanz Methylenchlorid wurde mit Abstand in den höchsten Konzentrationen in den Sickerwässern nachgewiesen. Es wurde in 19 Sickerwässern in Konzentrationen zwischen $0.06-8'220~\mu g/l$ festgestellt (*Abbildung 10*). Die Sickerwässer der Kompartimente B04 (660 $\mu g/l$), C01 (1'000 $\mu g/l$) und E08 (8'220 $\mu g/l$) weisen mit Abstand die höchsten Konzentrationen auf. Der K-Wert nach AltIV beträgt 20 $\mu g/l$ [11] und wurde in den Kompartimenten B04, C01, C03, D03, E01 und E08 um ein Vielfaches überschritten.

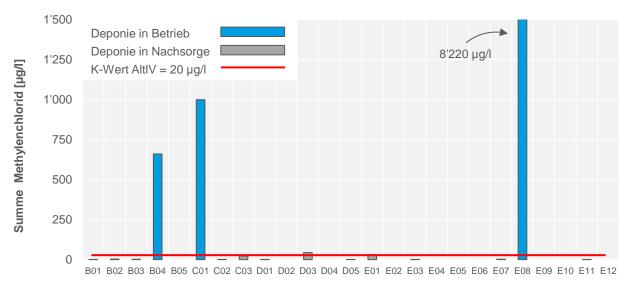


Abbildung 10: Methylenchlorid-Konzentrationen je untersuchtes Deponie-Kompartiment.

Naphthalin wurde im Sickerwasser des Kompartiments E06 in einer Konzentration von 455 μ g/l nachgewiesen. Diese Konzentration liegt unterhalb des massgeblichen K-Werts nach AltIV [11] von 1'000 μ g/l, allerdings ist der PNEC von 2 μ g/l deutlich überschritten. Die erhöhte Naphthalin-Konzentration dürfte auf die in diesem Kompartiment abgelagerten mit Kohlenwasserstoffen verschmutzten Aushubmaterialien zurückzuführen sein.

In 15 Sickerwässern wurden weitere VOC über der Bestimmungsgrenze detektiert. Neben Methylenchlorid und Naphthalin wurden weitere 1-18 Einzelsubstanzen festgestellt. K-Werte gemäss AltIV [11] (für 41 von 56 Substanzen vorhanden) wurden für keine Einzelsubstanz überschritten. Der Grenzwert gemäss Anhang 2 TBDV [16] für monocyclische aromatische Kohlenwasserstoffe (BTEX, 3 µg/l) wurde in den Sickerwässern der Kompartimente C01, D02 und E06 überschritten. Der PNEC

[18] von o-Xylol (1.3 μg/l) wurde im Sickerwasser des Kompartiments E06 um den Faktor 10 überschritten.

Arzneimittel, Pestizide, Süssstoffe und Korrosionsschutzmittel

Mit einer Multikomponenten-Analyse (Bestimmung von Konzentrationen einzelner Komponenten in einer Mischung) von 110 organischen Spurenstoffen wurde die Belastung von Deponiesickerwasser durch Arzneimittel, Pestizide, Süssstoffe und Korrosionsschutzmittel untersucht. Dabei wurden auch unterschiedliche Abbauprodukte gemessen. In den nachstehenden Darstellungen ist die Substanzklasse der Pestizide in die folgenden Unterkategorien aufgeteilt: Biozide, Fungizide, Herbizide, Herbizid-Metaboliten und Repellent.

51 der insgesamt 110 gemessenen Substanzen konnten nachgewiesen und quantifiziert werden. *Abbildung 11* stellt die Anzahl gefundener Substanzen pro Deponie-Kompartiment dar. Hinsichtlich Anzahl oder Produktkategorie der Stoffe scheint es zwischen den Deponietypen keine deutlichen Trends zu geben. Das Sickerwasser der untersuchten Deponien enthielt je nach Kompartiment zwischen sieben und dreissig verschiedene Wirkstoffe, welche routinemässig in Oberflächengewässern gefunden werden.

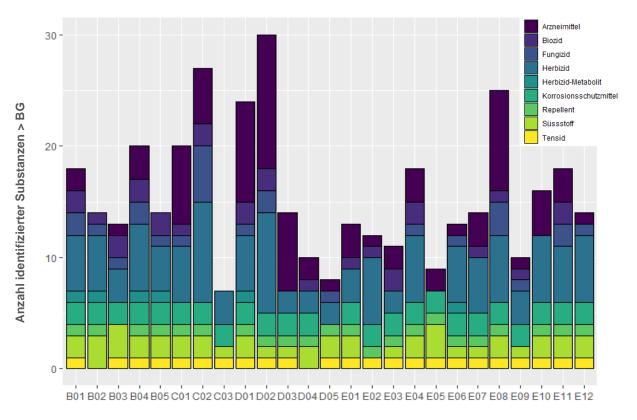


Abbildung 11: Anzahl der detektierten Einzelsubstanzen nach Substanzklasse je untersuchtes Deponie-Kompartiment. Messung mittels LC-HRMS.

In Abbildung 12 sind die Konzentrationen der in den Sickerwässern gemessenen Substanzen über alle Kompartimente hinweg aufsummiert. Die höchsten Konzentrationen wurden für die Biozid- und Pflanzenschutzmittelwirkstoffe Isoproturon und Mecoprop (beides Herbizide) sowie für das Korrosionsschutzmittel Benzotriazol gemessen. Auch der Süssstoff Cyclamat wurde in allen Deponietypen in grösseren Mengen nachgewiesen.

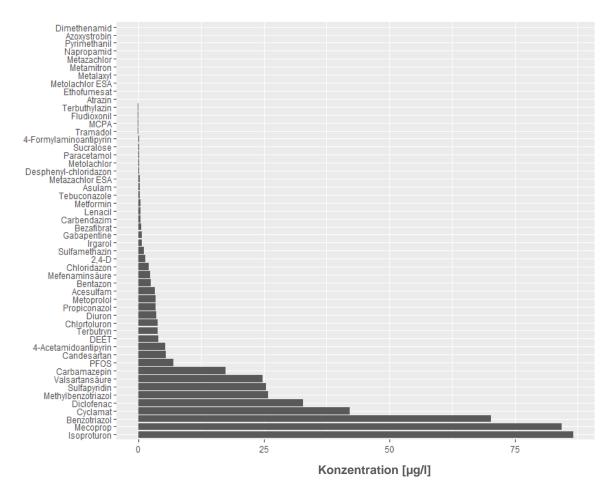


Abbildung 12: Summenkonzentrationen der gemessenen Substanzen für alle Deponie-Kompartimente.

Teilt man die Wirkstoffe nach Produktkategorien ein und summiert ihre Konzentrationen über alle Deponie-Kompartimente auf, findet man mengenmässig am meisten Herbizide, gefolgt von Arzneimitteln und Korrosionsschutzmitteln (*Abbildung 13*). Die meisten aufgeführten Herbizide sind sowohl in Pflanzenschutzmitteln als auch in Biozidprodukten zugelassen. Deren Herkunft kann somit nicht klar abgegrenzt werden. Am wahrscheinlichsten sind die Einträge jedoch auf den Einsatz der Stoffe als Materialschutz in Baustoffen zurückzuführen. Weitere in kleineren Mengen gemessene Substanzen können den Kategorien Fungizide (ebenfalls als Biozide oder Pflanzenschutzmittel eingesetzt), Tenside und Repellentien zugeordnet werden.

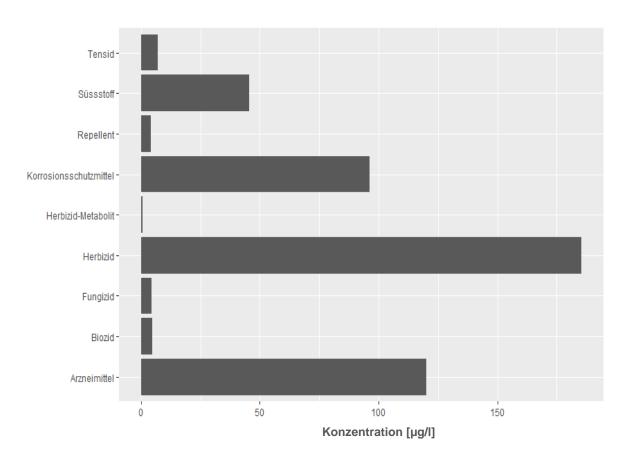


Abbildung 13: Summenkonzentrationen einer Produktkategorie für alle Deponie-Kompartimente.

In Abbildung 14 sind die gemittelten Konzentrationen der Einzelsubstanzen aus allen Kompartimenten nach Produktkategorie aufsummiert dargestellt. Grundsätzlich sind alle Produktkategorien in den Sickerwässern aller Deponietypen zu finden. Anhand der Zusammensetzung der Produktkategorien lassen sich die Deponietypen also nicht auseinanderhalten. Allerdings unterscheiden sich die Stoffkonzentrationen und die Anteile an der Gesamtbelastung voneinander. Die höchsten Konzentrationen wurden in den Produktkategorien Herbizide, Korrosionsschutzmittel, Arzneimittel und Süssstoffe gemessen. Ein Grossteil der Gesamtbelastung einer Produktkategorie wird meist durch ein bis zwei Substanzen verursacht. Bei den Herbiziden sind es Isoproturon und Mecoprop, bei den Korrosionsschutzmitteln ist es (Methyl-)Benzotriazol und bei den Süssstoffen konnte hauptsächlich Cyclamat gemessen werden.

Die Deponiesickerwasser der Typ B-Kompartimente weisen eine deutlich tiefere durchschnittliche Gesamtbelastung der analysierten Spurenstoffe auf, als die Kompartimente anderer untersuchter Deponietypen (Typ C, D und E). Es sind zwar Substanzen aus diversen Produktkategorien zu finden, insgesamt aber in viel kleineren Konzentrationen. Die Typ C-Kompartimente, in welchen anorganische und schwer lösliche Industrie- aber auch Bauabfälle abgelagert werden, fallen vor allem durch sehr hohe Herbizid- und Benzotriazol-Konzentrationen auf. Herbizide werden häufig in Biozidprodukten im Gebäudeschutz in Fassaden oder Bitumenbahnen eingesetzt, daher sind Bauabfälle eine plausible Quelle für diese Substanzen. Benzotriazol wird unter anderem als Korrosionsschutzmittel

für Kupfer, Enteisungsmittel, in Geschirrspülmittel oder als Kühlschmiermittel in der Metallbearbeitung eingesetzt. Das in den analysierten Sickerwässern nachgewiesene Benzotriazol stammt wohl mehrheitlich aus Industrieprozessen. In den Deponien des Typs D leisten die Süssstoffe und Arzneimittel einen wesentlichen Beitrag zur Gesamtbelastung des Sickerwassers. Es handelt sich dabei vermutlich um Rückstände aus Siedlungsabfällen, die via Schlacken von KVA in die Deponien gelangten. Typ E-Kompartimente zeichnen sich durch erhöhte Benzotriazol-Konzentrationen aus, sind aber ansonsten eher unauffällig.

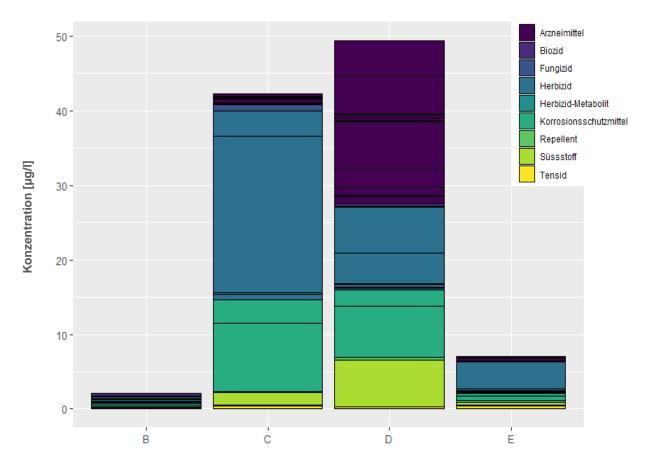


Abbildung 14: Durchschnittliche Summenkonzentrationen der Einzelsubstanzen aller Deponien eines Deponietyps, sortiert nach Produktkategorie.

Addiert man die gemessenen Wirkstoffkonzentrationen für jedes untersuchte Kompartiment einzeln auf, ergibt sich ein sehr heterogenes Bild (*Abbildung 15*). Im Sickerwasser der fünf Typ B-Kompartimente fand man wie erwartet die typischen Substanzen aus Bauabfällen, im Vergleich zu den anderen Deponien allerdings in geringeren Konzentrationen (siehe voriger Absatz). Die beiden Kompartimente C01 und C02 fallen durch hohe Herbizid- und Korrosionsschutzmittel-Konzentrationen auf. Im Sickerwasser von C01 wurde mit 60 µg/l eine sehr hohe Isoproturon-Konzentration festgestellt. Eine mögliche Ursache hierfür sind abgelagerte Farbrückstände, welche neben Bauschutt auch aus Strahlsanden stammen können. Die fünf Typ D-Kompartimente sind sowohl bezüglich Gesamtbelastung als auch Schadstoffzusammensetzung sehr unterschiedlich. Tendenziell wurden etwas mehr Arzneimittel und Süssstoffe gemessen als dies in den anderen Deponiesickerwassern der Fall ist.

Ähnlich sieht es bei den Typ E-Kompartimenten aus, dort ist häufig die Herbizid-Konzentration (Mecoprop und Isoproturon) stark erhöht. Auffällig ist allenfalls Kompartiment E06, wobei es sich um eine alte Deponie für Kohlenwasserstoff belastete Aushubmaterialien mit erhöhtem PFOS- und Benzotriazol-Anteil handelt (*Abbildung 16*).

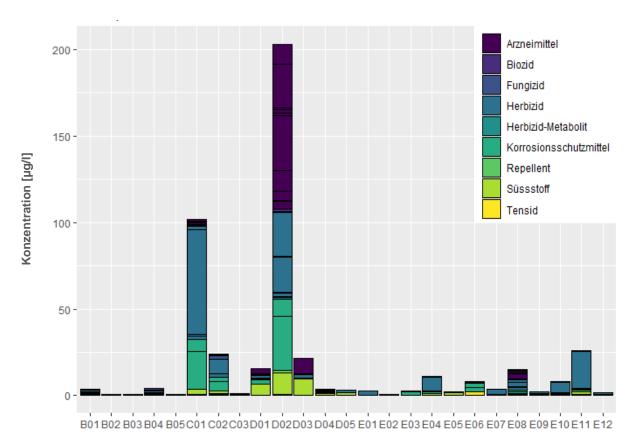


Abbildung 15: Aufsummierte Konzentrationen der gemessenen Substanzen nach Produktkategorien je untersuchtes Deponie-Kompartiment.

Für die Produktekategorien und deren Substanzen sind keine Richt- oder Grenzwerte für Deponiesickerwasser festgelegt. Im Hinblick auf eine Einleitung in ein Oberflächengewässer soll gemäss GSchV Anhang 1 und 2 [4] die Wasserqualität so beschaffen sein, dass die Gewässer keine künstlichen, langlebigen Stoffe enthalten. Andere Stoffe, die Gewässer verunreinigen können und die durch menschliche Tätigkeiten ins Wasser gelangen können, dürfen keine nachteiligen Einwirkungen auf die Lebensgemeinschaften von Pflanzen, Tieren und Mikroorganismen und auf die Nutzung der Gewässer haben. Sie dürfen in Gewässern nur in nahe bei Null liegenden Konzentrationen vorhanden sein, wenn sie dort natürlicherweise nicht vorkommen.

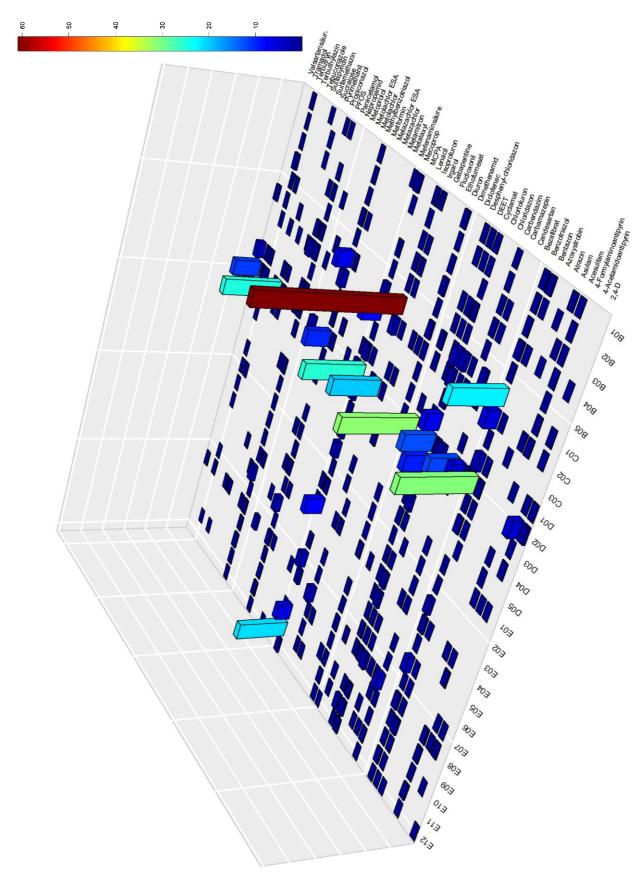


Abbildung 16: Konzentrationen der Einzelsubstanzen je untersuchtes Deponie-Kompartiment.

3.3. Resultate Non-Target Screenings

Screening apolare Stoffe

Mit Hilfe des GC-MS-Screenings konnten über alle untersuchten Deponie-Kompartimente hinweg 242 verschiedene Einzelsubstanzen identifiziert werden. Diese wurden für die Auswertung und Kategorisierung nach ihren chemischen Eigenschaften in Substanzklassen und nach vermutetem Ursprung respektive ihrer Anwendung in Produktkategorien eingeteilt. Es handelt sich dabei, bedingt durch die analytische Methode, um apolare, eher kleine Verbindungen. Konzentrationsangaben können keine gemacht werden, da im GC-MS-Screening keine Referenzsubstanzen für identifizierte Stoffe verwendet werden.

In Abbildung 17 sind sämtliche nachgewiesenen Substanzklassen und Produktkategorien aufgeführt. Ausserdem ist dargestellt, wie viele Einzelsubstanzen gefunden wurden. Substanzen, die in mehreren Kompartimenten identifiziert wurden, sind entsprechend mehrfach gezählt. Zu den am häufigsten detektierten Einzelsubstanzen gehören PAK und NSO-Heterozyklen sowie deren Derivate. Weitere wichtige Substanzklassen sind Phenol-Derivate, monozyklische aromatische Kohlenwasserstoffe mit unterschiedlichen Kohlenwasserstoff-Substituenten oder (chlorierte) Aniline.

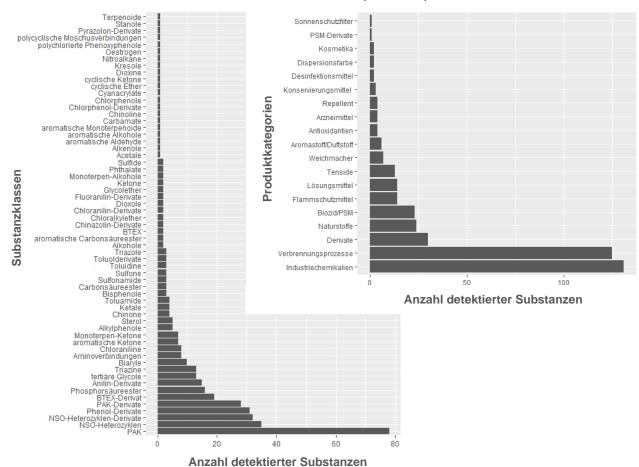


Abbildung 17: Anzahl detektierter Substanzen pro Substanzklasse oder Produktkategorie für alle Deponie-Kompartimente.

Ein grosser Teil der gefundenen Stoffe wurde der Produktekategorie Industriechemikalien zugeordnet. Sie sind Ausgangsprodukte verschiedener Syntheseprozesse oder Bestandteil von Farben oder Lösungsmitteln. Darüber hinaus wurden mehr als hundert Substanzen detektiert, welche aus Steinkohlenteer bzw. Verbrennungsprozessen stammen. In kleinerem Umfang wurden Abbauprodukte unterschiedlicher Herkunft (zusammengefasst als Derivate), Biozide sowie Flammschutzmittel und Tenside nachgewiesen.

In Abbildung 18 wird dargestellt, wie viele Substanzen einer bestimmten Produktkategorie in welchem Deponietyp zu finden sind. Ein Vergleich der reinen Anzahl Treffer pro Produktkategorie ist allerdings nicht aussagekräftig, da im Vergleich zu den Typen B, C und D mit jeweils fünf, drei und fünf untersuchten Deponie-Kompartimenten, die Deponien des Typs E mit zwölf Kompartimenten übervertreten sind und daher erwartungsgemäss mehr Stoffe aufweisen.

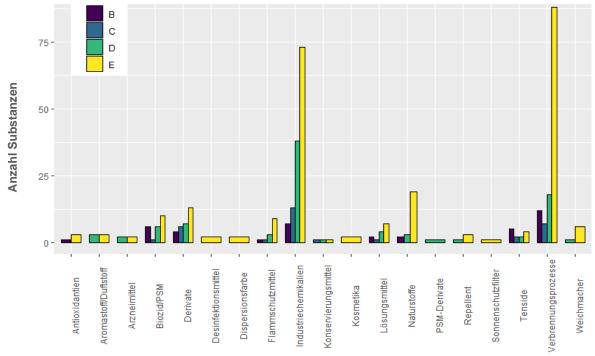


Abbildung 18: Anzahl detektierter Substanzen einer Produktkategorie pro Deponietyp B bis E.

Auffällig ist, dass Produktkategorien, welche im Sickerwasser von Typ B- und Typ C-Kompartimenten vorkommen, in der Regel in sämtlichen untersuchten Deponietypen auftreten. Dabei handelt es sich konkret um Biozide, Flammschutzmittel, Industriechemikalien, Tenside, Lösungsmittel und Substanzen aus Verbrennungsprozessen oder Steinkohlenteer. Quellen von Bioziden, Tensiden, PAK und Flammschutzmitteln können abgelagerte Bauabfälle sein: Biozide und Tenside werden oft als Additive in Dispersionsfarbe eingesetzt, wobei Biozide Gebäudefassaden vor Bewuchs schützen. In die stark vertretene Kategorie «Verbrennungsprozesse» fallen zu einem wesentlichen Teil PAK und NSO-Heterozyklen. Sie sind natürliche Bestandteile von Kohle und Erdöl und kommen nach unvollständiger Verbrennung oder Verkokung mit hohen Anteilen in Teer vor. Bis 1984 wurden viele Produkte mit Steinkohlenteer behandelt und verbaut, z.B. Asphalt, Teerpappe oder teerölbehandelte Hölzer, welche nach dem Rückbau deponiert wurden.

Das gemessene Stoffspektrum in Typ C Kompartimenten ist vergleichbar mit dem von Typ B. Grundsätzlich werden in solchen Deponien nur anorganische oder schwerlösliche Rückstände aus Industrie und Abfallbehandlungsanlagen sowie mineralische Bauabfälle abgelagert, weshalb wenig organische Stoffe festgestellt wurden. Bei Typ D- und Typ E-Kompartimenten ist das Stoffspektrum etwas breiter. In Typ D-Kompartimenten, in denen KVA-Schlacken und andere Verbrennungsrückstände, untergeordnet aber auch Bau- und Industrieabfälle abgelagert werden, findet man im Deponiesickerwasser zusätzlich zu den oben genannten Produktkategorien auch diverse Arzneimittel, Konservierungsmittel, Repellentien und Weichmacher aus verbrannten Siedlungsabfällen. Die in Typ E-Kompartimenten abgelagerten Abfälle sind die am stärksten belasteten Rückstände aus Abfallbehandlungsanlagen und aus den Bereichen Bau und Industrie. Die darin gefundenen Produktkategorien sind mit einzelnen Ausnahmen sehr ähnlich zu denen aus Typ D.

Vergleicht man die gefundenen Substanzklassen in den unterschiedlichen Deponietypen miteinander, ergeben sich keine offensichtlichen Muster. PAK, NSO-Heterozyklen, Phenole oder BTEX-Derivate lassen sich in allen Deponietypen feststellen. *Abbildung 19* zeigt, wie viele Substanzen aus welcher Produktkategorie im Sickerwasser des jeweiligen Deponie-Kompartiments gemessen wurden.

Die fünf untersuchten Typ B-Kompartimente sind bis auf B01 alle verhältnismässig neu (ab dem Jahr 2010 oder später, *Tabelle 1*) und unauffällig. Die im Sickerwasser detektierten Substanzen entsprechen den Erwartungen hinsichtlich des abgelagerten Materials. Die Kompartimente D02, D03 und E08 enthalten aufbereitete Sonderabfälle aus komplexen Altlastensanierungen. Entsprechend breit ist das Stoffspektrum im Bereich Industriechemikalien, Arzneimittel und PAK/NSO-Heterozyklen. Ein weiteres auffälliges Kompartiment ist E06, es handelt sich dabei um eine alte Deponie mit Kohlenwasserstoff belasteten Aushubmaterialien, die sich seit 1998 in Nachsorge befindet. Wie erwartet finden sich in ihrem Sickerwasser zahlreiche teerölstämmige PAK und NSO-Heterozyklen sowie diverse Chemikalienrückstände aus industriellen Tätigkeiten. Ebenfalls eine grosse Vielfalt an PAK, NSO-Heterozyklen und Industriechemikalien ist in den Kompartimenten E08 und E10 zu finden. Im Fall von E08 sind die Nachweise vermutlich auf den deponierten Ausbauasphalt und Industrieabfälle zurück zu führen. Beim Kompartiment E10 kann die abgelagerte Schlacke als mögliche Ursache gesehen werden.

Screening polare Stoffe

Die Ergebnisse des Non-Target-Screenings und der Cluster Analysen werden in einem separaten Bericht der enviBee GmbH diskutiert. Die wichtigsten Erkenntnisse sind im Folgenden kurz zusammengefasst und in *Abbildung 20* ersichtlich.

Es ist eine sehr grosse Anzahl an unterschiedlichen identifizierbaren Massensignalen in den Screening-Spektren vorhanden (rund 16'000 wurden extrahiert). Grob abgeschätzt könnte es sich dabei um rund 10'000 unterschiedliche Stoffe handeln. Es sind keine klaren Cluster über die gleichen Deponietypen ersichtlich: Analog zum GC-MS Screening und der LC Target Analytik zeigt auch das Non-Target-Screening keine klare Zuordnung der stofflichen Zusammensetzung zum Deponietyp. Klare Profilcluster konnten nur für Einzelstandorte gefunden werden.

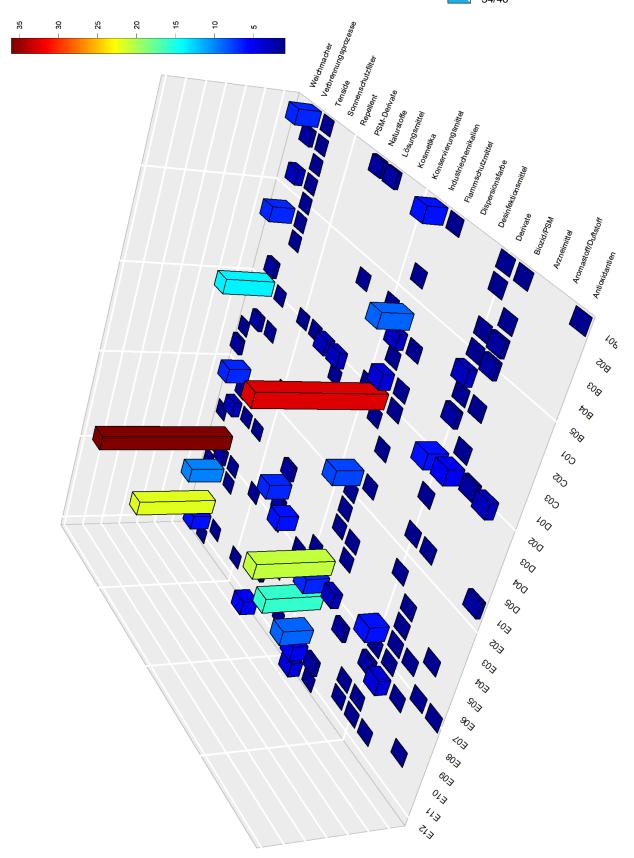


Abbildung 19: Anzahl detektierter Substanzen je untersuchtes Deponie-Kompartiment und Produktkategorie mittels GC-MS.

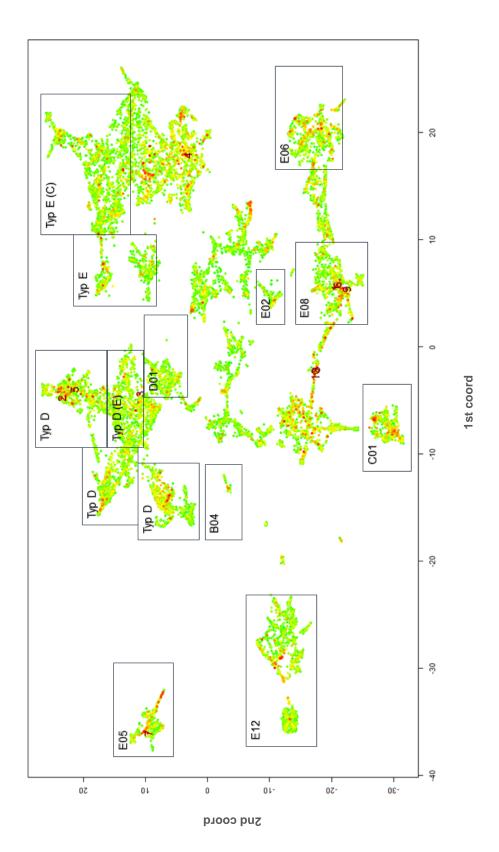


Abbildung 20: Cluster Darstellung der 16'000 identifizierten Massensignale in den Deponiesickerwasserproben.

4. Schlussfolgerungen

4.1. Fazit

Insgesamt wurde im Sickerwasser der untersuchten Deponien ein sehr breites und heterogenes Spektrum an Substanzen gefunden. Neben Industriechemikalien wurden in fast allen Deponiesickerwassern per- und polyfluorierte Substanzen (PFAS), Rückstände aus Verbrennungsprozessen (PAK und NSO-Heterozyklen). Biozide, Korrosionsschutzmittel, Süssstoffe und Arzneimittel festgestellt. Flammschutzmittel, welche häufig als Brandschutz im Baugewerbe verwendet werden, spielten für die Beurteilung der Sickerwasserqualität eine untergeordnete Rolle. Es stellt sich als schwierig heraus, die identifizierten Substanzen mit den abgelagerten Abfällen in Verbindung zu bringen oder mit ihnen den jeweiligen Deponietyp (Typ B bis Typ E) zu charakterisieren. Untersucht wurden sowohl alte Deponien, so genannte Multikomponentendeponien, als auch neuere Deponien, nach Inkrafttreten der TVA und VVEA [2][3]. Daher sind die Informationen zu den deponierten Abfällen in den einzelnen Deponie-Kompartimenten, insbesondere bei Deponien in Nachsorge, zu allgemein gefasst. Sie gehen oftmals nicht über «Bauschutt» oder «Industrieabfälle» hinaus. Zusätzlich werden in den meisten Deponietypen ähnliche Abfallarten entsorgt. Bauabfälle und Aushub aus belasteten Standorten kommen in praktisch allen Kompartimenten vor. Kehrrichtschlacken sind in den meisten Typ Daber auch Typ E-Kompartimenten / Multikomponentendeponien abgelagert. Entsprechend werden typische Vertreter von Substanzen aus diesen Abfällen, wie Biozide, Korrosionsschutzmittel, Phenole oder Verbrennungsrückstände, überall gefunden. Auch PFAS gelangen durch Aushubmaterial und Bauabfälle, unter anderem aus Löschmitteleinsätzen, sowie Verbrennungsrückständen aus der KVA auf die Deponien. Ein Teil dieser PFAS-Substanzen gelangten durch Bodenaushub auf Deponien. Messungen aus der Nationalen Bodenbeobachtung (NABO) im 2022 zeigen, dass eine gesamtschweizerische Grundbelastung von Böden besteht [23]. Tendenziell ist feststellbar, dass Typ B-Kompartimente tiefere Schadstoffkonzentrationen und eine etwas geringere Anzahl an Schadstoffen aufweisen. Die restlichen Kompartimente sind dagegen untereinander bezüglich Anzahl und Konzentration der Schadstoffe im Sickerwasser kaum abgrenzbar. Diese Tatsache erscheint vor allem bezüglich der Typ D-Kompartimente überraschend, da in diesen hauptsächlich Rückstände aus Verbrennungsprozessen abgelagert werden. Dies lässt vermuten, dass für die im Typ D-Kompartiment abgelagerten Rückstände aus der thermischen Verbrennung, diese organischen Schadstoffe möglicherweise nicht ausreichend zerstört wurden. Eine alternative Erklärung wäre, dass die Schadstoffgehalte in den deponierten Rückständen zwar deutlich tiefer sind, die Schadstoffe aber in einer besser freisetzbaren Form vorliegen als in Abfällen anderer Deponietypen. Somit lässt sich das Auftreten von organischen Schadstoffen in Deponiesickerwassern nicht direkt auf den Deponietyp bzw. auf die Art der abgelagerten Abfälle zurückführen. Die Unterschiede zwischen den einzelnen Deponie-Kompartimenten sind hinsichtlich Zusammensetzung und Gehalt viel grösser als zwischen den eigentlichen Deponietypen. Auch zwischen dem Ablagerungszeitraum einer Deponie und den im Sickerwasser nachgewiesenen Stoffen scheint es keine offensichtlichen Zusammenhänge zu geben.

Unter Berücksichtigung, dass es sich um eine relativ kleine Anzahl einmaliger Proben handelt, die von weiteren Faktoren wie Niederschlag, Deponiegrösse oder Anteil der Abfallarten beeinflusst werden, ist das Ergebnis wenig überraschend. Grössere Konzentrationsschwankungen im Deponiesickerwasser sind durchaus der Normalfall, wie es die Vergleiche mit den Resultaten der Spezialuntersuchungen aus den vergangenen Jahren aufzeigen.

Eine eindeutige Korrelation zwischen abgelagerten Abfällen und Schadstoffvorkommen im Sickerwasser ergibt sich einzig in folgenden Fällen: Im Kompartiment E06, in welchem überwiegend kohlenwasserstoffhaltiges Aushubmaterial abgelagert wurde, konnte eine grosse Palette NSO-Heterozyklen und PAK nachgewiesen werden. In den Kompartimenten D01, D02 und E08 in denen Aushubmaterial aus einer komplexen Altlastensanierung abgelagert wurde, konnte eine Vielzahl an Anilinen, Chloranilinen oder halogenierten Phenolen sowie hohen Konzentrationen diverser Arzneimittel gemessen werden.

Eine Abschätzung der Gefährdung von Oberflächengewässern bei Einleitung der untersuchten Deponiesickerwasser, via ARA oder direkt, ist nur für einen Bruchteil all dieser Substanzen möglich. Insgesamt konnte für 119 Einzelsubstanzen eine Gefährdungsbeurteilung vorgenommen werden. Einige der eindeutig identifizier- und quantifizierbaren Stoffe werden routinemässig im Überwachungsprogramm von Oberflächengewässern erfasst und beurteilt. Von den Substanzen, welche bezüglich der Gefährdung von Oberflächengewässern beurteilbar sind, zeigten folgende Substanzklassen respektive Substanzen in mehreren Kompartimenten Konzentrationen über der PNEC [18] oder über dem 10-fachen K-Wert nach Anhang 1 AltlV [11]:

Nonylphenole

Bisphenole

Per- und polyfluorierte Alkylsubstanzen (PFAS)

Aniline

Phenole

Methylenchlorid

Würden die entsprechenden Deponiesickerwasser sofort oder in der Nachsorgephase direkt in ein Oberflächengewässer eingeleitet, wäre eine Gefährdung der Oberflächengewässer hinsichtlich der genannten Substanzen / Substanzklassen möglich.

Die meisten Massenspektren, welche in den Non-Target-Screenings identifiziert wurden, können nicht eindeutig einer konkreten Substanz zugeordnet werden. Üblicherweise gibt es immer mehrere Möglichkeiten, die auf das identifizierte Massenspektrum passen. Diese unbekannten Substanzen gelangen mit dem Sickerwasser direkt oder indirekt über eine ARA in die Umwelt. Die Gefährdung der Gewässer durch diese Substanzen kann mit den vorhandenen Daten und Methoden nicht beurteilt werden. Aktuell laufen auf nationaler und internationaler Ebene verschiedene Projekte, um erste Gefährdungsabschätzungen aufgrund von Non-Target-Analysen zu ermöglichen [24].

4.2. Weiteres Vorgehen

In den Deponiesickerwassern wurden Konzentrationen organischer Schadstoffe festgestellt, welche in der Nachsorgephase der Deponien oder auch gegenwärtig zu schädlichen Einwirkungen auf Oberflächengewässer führen können. Für eine Risikobeurteilung, im Sinne einer Beurteilung des Freisetzungspotenzials und der tatsächlichen Umweltgefährdung, sind weitere Abklärungen erforderlich:

- Da es sich um einmalige Messungen handelt, sind zur Verifizierung der Ergebnisse diejenigen Kompartimente, bei denen entsprechend erhöhte Schadstoffkonzentrationen festgestellt wurden, nochmals bei unterschiedlichen Niederschlags- und Trockenperioden zu untersuchen. Dabei sollten insbesondere Nonylphenole, Bisphenole, Per-/polyfluorierte Substanzen, Aniline, Phenole und Methylenchlorid gemessen werden.
- Im Hinblick auf künftig abzulagernde Abfälle sind Überlegungen zur Herkunft der Stoffe aber auch deren Ausbreitung zu treffen. Gezielte Untersuchungen von einzelnen Abfallarten, beispielsweise Schlacke oder Filterasche, können Auskunft über deren Schadstoffpotenzial geben.
- Bei den untersuchten Stoffen ist zu überlegen, welche organischen Schadstoffe in das jährliche Monitoringprogramm der Deponiesickerwasser aufzunehmen sind. An dieser Stelle ist festzuhalten, dass die Perfluorierten Substanzen bereits ins Standardmonitoring übertragen wurden und regelmässig gemessen werden.
- Zur weiteren Abklärung der tatsächlichen Gefährdung für den jeweiligen Vorfluter wären zusätzliche ökotoxikologische Untersuchungen sinnvoll. Die Ziele und der mögliche zusätzliche Erkenntnisgewinn einer entsprechenden Untersuchung wären allerdings vorgängig zu klären. Dabei wäre auch zu berücksichtigen, dass ökotoxikologische Untersuchungen mit Deponiesickerwasser-Proben nicht immer durchführbar sind (Matrixeffekte, reduzierende Verbindungen etc., Kapitel 1.3.3).
- Ebenso sind zur besseren Gefährdungsbeurteilung weitere chemisch-analytische Untersuchungen des Wassers bei der ARA (Input / Output) oder direkt im Vorfluter durchzuführen.
 Damit sind konkretere Aussagen zur tatsächlichen Gefährdung von Tier und Pflanzen im Vorfluter möglich.
- Für die Kompartimente mit periodisch erhöhten Konzentrationen organischer Schadstoffe in Sickerwässern müssten im Einzelfall Massnahmen zwecks Reduktion der Schadstofffreisetzung getroffen werden oder Nachsorgekonzepte erstellt werden, welche diesen Befund berücksichtigen.
- Um die unbekannten Stoffe besser einordnen zu können, ist in einem nächsten Schritt eine Risikoabschätzung sinnvoll, bei welcher ökotoxikologische Aspekte sowie Reinigungs- und Verdünnungseffekte beurteilt werden. Ausserdem ist eine Untersuchung der zeitlichen Entwicklung der Substanzen in den Sickerwässern interessant, um die nötige Nachsorgedauer genauer festlegen zu können. Eine toxikologische Beurteilung via Einzelsubstanzen vorzunehmen scheint in Anbetracht der Vielzahl der detektierten Stoffe und der Heterogenität der verschiedenen Deponie-Kompartimente wenig zielführend. Wirkungsbasierte Testverfahren würden vielversprechendere Resultate liefern. Aufgrund daraus folgender Erkenntnisse können bei Bedarf Massnahmen ergriffen werden, um allfällige gewässergefährdende Auswirkungen von organischen Spurenstoffen aus Deponien im Kanton Zürich zu reduzieren oder zu beseitigen.

5. Literaturverzeichnis

- [1] Abfallgesetz (Abfg) des Kantons Zürich vom 25. September 1994 (Stand 1. Juli 2014).
- [2] Verordnung über die Vermeidung und die Entsorgung von Abfällen (Abfallverordnung, VVEA) vom 4. Dezember 2015 (Stand 1. April 2022).
- [3] Technische Verordnung über Abfälle (TVA) vom 10. Dezember 1990 (Stand 1. Juli 2011).
- [4] Gewässerschutzverordnung (GSchV) vom 28. Oktober 1998 (Stand 1. Januar 2021).
- [5] Standortspezifische Einleitbedingungen für Sickerwässer aus Deponien. AWEL, Februar 2013.
- [6] Spezialuntersuchungen 2013. Sickerwasser von Deponien im Kanton Zürich. Bericht der FRIEDLIPARTNER AG vom 19. Dezember 2013.
- [7] Spezialuntersuchungen 2014. Sickerwasser von Deponien im Kanton Zürich. Bericht der FRIEDLIPARTNER AG vom 22. Dezember 2014.
- [8] Zusatzauswertungen Spezialuntersuchungen 2014. Deponie-Monitoring Kanton Zürich. Aktennotiz der FRIEDLIPARTNER AG vom 11. Mai 2015.
- [9] Ökotoxikologische Relevanz von Deponiesickerwassern. Untersuchungen an ausgewählten Deponien im Rahmen des Deponiefonds des Kantons Zürich. Präsentation der Arcadis Schweiz AG vom 11. Januar 2016.
- [10] Protokoll zum Workshop Emerging Pollutants vom 26. Februar 2021, FRIEDLIPARTNER AG vom 8. März 2021.
- [11] Verordnung über die Sanierung von belasteten Standorten (AltIV) vom 26. August 1998 (Stand 1. Mai 2017).
- [12] Emerging Contaminants from Industrial and Municipal Waste, Occurrence, Analysis and Effects. The Handbook of Environmental Chemistry. Springer, 2008.
- [13] Deponiesickerwasser: Untersuchungen zu Zusammensetzung, Abbaubarkeit und Hemmwirkung in biologischen Kläranlagen. Umweltbundesamt Österreich, 2016.
- [14] Rheinüberwachungs-Station Weil am Rhein, Jahresbericht 2017.
- [15] Verordnung zur Reduktion von Risiken beim Umgang mit bestimmten besonders gefährlichen Stoffen, Zubereitungen und Gegenständen (Chemikalien-Risikoreduktions-Verordnung, ChemRRV) vom 18. Mai 2005 (Stand 6. Oktober 2022).

- [16] Verordnung des EDI über Trinkwasser sowie Wasser in öffentlich zugänglichen Bädern und Duschanlagen (TBDV) vom 16. Dezember 2016 (Stand 1. August 2021).
- [17] EPA Regional Screening Levels (RSL) Resident Tapwater (TR=1E⁻⁰⁶, THQ=0.1) und Maximum contaminant levels for drinking water (**MCL). https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables (Mai 2020).
- [18] Predicted No Effect Concentration (PNEC). https://substances.ineris.fr/fr/
- [19] Messmethoden im Abfall- und Altlastenbereich. BAFU-Vollzugshilfe (Stand 2017).
- [20] Risikoabschätzung, Beurteilung der Umweltrelevanz von Sickerwässern aus Schlackekompartimenten, BMG, Schlieren, 19. November 2010 (Entwurf)
- [21] BAFU-Liste Konzentrationswerte für Stoffe, die nicht in Anhang 1 oder 3 AltIV enthalten sind (Stand Januar 2022).
- [22] Memorandum on the implementation of the EFSA sum TWI of PFASs, 2021, RIVM (National Institute for Public Health and the Environment, NL).
- [23] Thalmann Basilius, Hofer Christoph, Wächter Daniel, Kulli Beatrice, "Per- und polyfluorierte Alkylsubstanzen (PFAS) in Schweizer Böden", 2022, Altlastenspektrum.
- [24] Pilleriin Peets, Wei-Chieh Wang, Matthew MacLeod, Magnus Breitholtz, Jonathan W. Martin, Annerli Kruve, "MS2Tox Machine Learning Tool for Predicting the Ecotoxicity of Unidentified Chemicals in Water by Nontarget LC-HRMS", 2022, Environmental Science and Technology.

Anhang 1 – Methoden

Quantitative Analytische Methoden nach Substanzklassen

Bromierte und Organophosphor-Flammschutzmittel

Hexabromcyclododecan (HBCD, HxBB)

Es wurden 17 bromierte Flammschutzmittel und sieben Organophosphor-Flammschutzmittel bestimmt. Zur Probenvorbereitung wurde 1 I Deponiesickerwasser 3-4 Mal mit je 50 ml Dichlormethan und einmal mit 50 ml n-Hexan extrahiert. Ein Aliquot von 150 ml Lösungsmittel wurde nach Zugabe von isotopenmarkierten internen Standards auf 30 µl aufkonzentriert. Nach Zugabe isotopenmarkierter Wiederfindungsstandards wurden die Konzentrationen der bromierten Flammschutzmittel und der Organophosphor-Flammschutzmittel mittels Gaschromatographie mit hochauflösender Massenspektrometrie (GC-HRMS) bestimmt. Die Bestimmungsgrenzen lagen im Bereich von 0.2-50 ng/l.

Bromierte Flammschutzmittel	Organophosphor-Flammschutzmittel
Hexabrombiphenyl (HxBB)	Tri-isobutylphosphat (TiBP)
Tribrombiphenyl (TriBB)	Tri-n-butylphosphat (TnBP)
Tetrabrombiphenyl (TeBB)	Tris(2-chlorethyl)phosphat (TCEP)
Heptabrombiphenyl (HpBB)	Tris(chlorpropyl)phosphat (TCPP)
Octabrombiphenyl (OcBB)	Tris(dichlorpropyl)phosphat (TDCPP)
Nonabrombiphenyl (NoBB)	Triphenylphosphat (TPhP)
Decambrombiphenyl (PBB-209)	Tri-(2,3-Dibrompropyl)-Phosphat (TBPP)
2,4,4'-Tribromdiphenylether (BDE-28)	
2,2',4,4'-Tetrabromdiphenylether (BDE-47)	
2,2',4,4',6-Pentabromdiphenylether (BDE-100)	
2,2',4,4',5,5'-Hexabromdiphenylether (BDE-153)	
2,2',4,4',5,6'-Hexabromdiphenylether (BDE-154)	
2,2',3',4,4',5',6-Heptabromdiphenylether (BDE-183)	
2,2',3,3',4,4',6,6'-Octabromdiphenylether (BDE-197)	
2,2',3,3',4,4',5,5',6-Nonabromdiphenylether (BDE-206)	
Decabromdiphenylether (BDE-209)	

Phthalate und Nonylphenole

Aus der Stoffklasse Weichmacher wurden Phthalate und Phenole analysiert. Die Untersuchung der Phthalate erfolgte gemäss Norm EN ISO 18856. Um die Phthalat- und Nonylphenol-Konzentrationen zu ermitteln wurde max. 1 I Probe mittels flüssig/flüssig-Extraktion mit Cyclohexan extrahiert. Der so erhaltene Extrakt wurde gaschromatographisch auf einer Kapillarsäule getrennt und mittels Massenspektrometer identifiziert und quantifiziert. Die Bestimmungsgrenze der Phthalate lag bei $0.1~\mu g/l$, diejenige der Nonylphenole bei $0.05~\mu g/l$. Es wurden folgende Substanzen analysiert:

Benzylbutylphthalat Dimethylphthalat Bis(2-ethylhexyl)phthalat

Dibutylphthalat Di-n-octylphthalat Nonylphenole (Summenparameter)

Diethylphthalat

Thiazole, Bisphenole und Acrylamid

Für die Untersuchung der Thiazole und Bisphenole wurde die Probe ohne weitere Aufarbeitung in ein LC-MS-System injiziert und auf einer RP-HPLC-Säule chromatographisch getrennt. Anschliessend wurden die Bisphenole mittels ESI-MS/MS und die Thiazole mittels LC-APCI-QTOF identifiziert und quantifiziert. Die Bestimmungsgrenze der Thiazole lag bei 0.1-5 μg/l, diejenige der Bisphenole bei 0.1-1 μg/l. Es wurden folgende Substanzen bestimmt:

2-Aminobenzothiazole Benzothiazol Bisphenol A
2-Mercaptobenzothiazole 2(3H)-Benzothiazolon Bisphenol S
2-Methylthiobenzothiazole Acrylamid Bisphenol F

Per- und polyfluorierte Alkylsubstanzen (PFAS)

Zur Bestimmung von PFAS wurde die Probe ohne weitere Aufarbeitung grossvolumig in ein LC-MS-System injiziert und auf einer RP-HPLC-Säule chromatographisch getrennt. Anschliessend wurden die Analyten mittels ESI-MS/MS identifiziert und quantifiziert. Die Bestimmungsgrenze lag bei 0.01-0.1 µg/l je Einzelsubstanz. Es wurden folgende Substanzen bestimmt:

Perfluorbutansäure (PFBA)
Perfluorbutansulfonsäure (PFBS)
Perfluorpentansäure (PFPeA)
Perfluorhexansäure (PFHxA)
Perfluorhexansäure (PFHxA)
Perfluorheptansäure (PFHpA)
Perfluoroctansäure (PFDA)
Perfluoroctansäure (PFOA)
Perfluoroctansäure (PFOS)
Perfluornonansäure (PFNA)
6:2-Fluortelomersulfonsäure (6:2-FTS)

Perfluordecansäure (PFDA)

Aniline und Chloraniline

Die Aniline wurden nach Zusatz von KOH und nach Sättigung mit NaCl mittels SPME (solid phase micro extraction) aus dem Dampfraum der Wasserprobe extrahiert. Durch thermische Desorption im GC-Injektor wurden die so angereicherten Stoffe auf eine Trennsäule gebracht, dort gaschromatographisch getrennt und mittels MS/MS identifiziert und quantifiziert. Die Bestimmungsgrenze lag bei 0.1 µg/l je Einzelsubstanz. Es wurden folgende Substanzen bestimmt:

Anilin Dimethylaniline (2,4-/ 2,6-/ 3,5-) m-/o-/p-Toluidin

3-Chlor-2-Methylanilin 2,4,6-Trimethylanilin Trichloraniline

4/5-Chlor-2-Methylanilin Chloraniline (2-/ 3-/ 4-) (2,3,4-/ 2,4,5-/ 2,4,6-/ 3,4,5-)

N,N-Dimethylanilin Dichloraniline

(2,3-/2,4-/2,5-/2,6-/3,4-/3,5-)

Phenole und Chlorphenole

Die Untersuchung der Phenole erfolgte gemäss DIN 38407-27. Dabei wird die Probe basisch gestellt, mit Essigsäureanhydrid acetyliert und bei pH 4 mit Cyclohexan flüssig/flüssig extrahiert. Der Extrakt wird dann gaschromatographisch aufgetrennt und via MS detektiert. Die Bestimmungsgrenze lag bei 0.1 µg/l je Einzelsubstanz. Es wurden folgende Substanzen bestimmt:

Phenol 4-Chlor-3-methylphenol o-/m-/p-Kresol 2-Chlorphenol Σ 2,4-/2,5-Dichlorphenol 2,4,6-Trichlorphenol

Pentachlorphenol 2,4-Dimethylphenol

Chlorbenzole

Die Untersuchung der Chlorbenzole erfolgte gemäss EPA-Methode Nr. 524.2. Dabei wurde die Probe mit Stickstoff ausgeblasen (Purge) und die Analyten auf einem Adsorptionsrohr aufgefangen (Trap). Anschliessend werden die Analyten thermisch desorbiert, mit Helium zu einem Gaschromatographen überführt und auf die Kapillarsäule aufgetragen. Die Analyten wurden gaschromatographisch getrennt, durch Massenspektrometrie (MS) identifiziert und quantifiziert. Die Bestimmungsgrenze lag bei 0.05 µg/l je Einzelsubstanz. Es wurden folgende Substanzen bestimmt:

Chlorbenzol 1,4-Dichlorbenzol 1,2,4-Trichlorbenzol 1,2,5-Trichlorbenzol 1,3,5-Trichlorbenzol

1,3-Dichlorbenzol

Nitroverbindungen

Die Untersuchung der Nitroaromaten erfolgte analog der Untersuchung der Phenole gemäss DIN 38407-27. Die Bestimmungsgrenze lag bei 0.1-5 µg/l je Einzelsubstanz. Es wurden folgende Substanzen bestimmt:

Nitrobenzol 4-Nitrophenol 2,4-Dinitrotoluol 2-Nitrophenol 2,4-Dinitrotoluol

Flüchtige organische Verbindungen (VOC)

Mit der EPA-Methode Nr. 524.2 wurden weitere 56 flüchtige organische Verbindungen (v.a. halogenierte Kohlenwasserstoffe und Benzin-Kohlenwasserstoffe) sowie die aliphatischen Kohlenwasserstoffe C_5 - C_{10} als Summenparameter bestimmt. Die Bestimmungsgrenze lag bei 0.05 μ g/l je Einzelsubstanz bzw. bei 10 μ g/l für die Summe der aliphatischen Kohlenwasserstoffe C_5 - C_{10} .

Arzneimittel, Pestizide, Süssstoffe sowie Korrosionsschutzmittel und diverse Abbauprodukte

Die Arzneimittel, Pestizide, Süssstoffe sowie Korrosionsschutzmittel und diverse Abbauprodukte wurden mittels einer Multikomponenten Target-Analyse von insgesamt 110 polaren organischen Spurenstoffen bestimmt. Die dafür verwendete LC-MS-Methode wird im AWEL seit 2018 routinemässig für die Umweltbeobachtung von Oberflächengewässern eingesetzt und erfasst den im Wasser gelösten Anteil der Stoffe. Die Proben wurden nach Filtration mit einem Glasfaserfilter mittels Flüssigchromatografie gekoppelt mit hochauflösender Massenspektrometrie (LC-HRMS/MS, Orbitrap) gemessen. Die Quantifizierung erfolgte mit Hilfe interner Standards und Referenzstandards. Die Bestimmungsgrenzen lagen dabei je nach Substanz zwischen 2 ng/l und 100 ng/l.

Non-Target Screenings und Clusteranalyse

Screening apolare Stoffe

Um ein möglichst breites Spektrum an organischen Spurenstoffen in Deponiesickerwasser zu erfassen, wurde zusätzlich zur Target-Analytik, bei der nach konkreten Substanzen gesucht wird, ein Non-Target-Screening durchgeführt. Die dafür verwendete semiquantitative GC-MS-Methode ist an die PAK- (Polycyclische aromatische Kohlenwasserstoffe) und PCB-Routineanalytik (Polychlorierte Biphenyle) des AWEL angelehnt und erfasst organische apolare Stoffe in einem Massenbereich von 50-500 u.

Die Analyten wurden mittels Flüssig-Flüssig-Extraktion aus dem Wasser extrahiert und anschliessend mit Hilfe von Gaschromatographie gekoppelt mit Massenspektrometrie detektiert. Dazu wurde circa ein halber Liter Probe mit 20 ml Cyclohexan (Lösungsmittel) und Tetrachlornaphthalin (Wiederfindung) versetzt und eine Stunde lang gerührt. Anschliessend wurde die apolare Lösungsmittelphase abgezogen und durch Verdampfen auf 0.1 ml eingeengt. Das Extrakt wurde zur semiquantitativen Bestimmung des Gehalts in einer Dibromundecan-Lösung (interner Standard) aufgenommen und gemessen. Die Massenspektren und die Kovats Retentionsindizes der vermeintlich gemessenen Substanzen wurden mit der NIST-Spektrendatenbank verglichen und bei guter Übereinstimmung als Treffer bestätigt. Parallel dazu wurden bei der Messung auch der jeweilige PCB-Gehalt als Summenparameter bestimmt, die Quantifizierung erfolgte über interne Standards und Referenzstandards. Im Haupttext werden PCB zusammen mit Phthalaten und Nonylphenolen behandelt.

Die Nachweisgrenze lag bei circa 50 ng/l, wobei dies je nach Substanz und Probe abweichen kann. Einzelne Proben waren sehr stark schwefelwasserstoffhaltig, wodurch Signale anderer Substanzen möglicherweise überlagert wurden und nicht detektiert werden konnten. Der Fokus des Screenings lag auf der Bestimmung der im Sickerwasser enthaltenen Stoffe, eine Aussage über deren Konzentration kann nur sehr bedingt gemacht werden, da unter anderem durch Matrixeffekte und unterschiedlicher Ausbeute nach Aufarbeitung der Proben zu grossen Unterschieden in der Wiederfindung führen können. Deshalb wurde bei der Auswertung des Screenings auf Gehaltsangaben verzichtet.

Screening polare Stoffe

Basierend auf den Daten der LC-MS Messung wurde von der enviBee GmbH eine Non-Target-Identifizierung und verschiedene Cluster-Analysen durchgeführt.

Bei der Auswertung aller (unbekannter) Signale (Non-Target-Screening), können zwei verschiedene Ziele verfolgt werden. Bei der Identifikation von relevanten, unbekannten Signalen (Non-Target-Screening – Identifikation), werden einzelne besonders auffällige Signale herausgefiltert, für die dann beispielsweise über den Vergleich mit Datenbanken mögliche zugrundeliegende Substanzen vorgeschlagen werden. Um auffällige Signale herauszufiltern braucht es Filterkriterien, wie zum Beispiel das Auftreten von intensiven Signalen in nur einzelnen Kompartimenten oder das Vorkommen in möglichst allen Kompartimenten eines bestimmten Deponietyps. Auch hier braucht es zur Plausibilisierung der Befunde eine manuelle Interpretation von zusätzlichen Messinformationen bis hin zur Bestätigung über die Messung von Referenzstandards.

Bei der Charakterisierung des Verhaltens aller Signale wird der Intensitätsverlauf aller detektierten Signale über verschiedene Proben hinweg charakterisiert und über Cluster-Analysen nach ihrer Ähnlichkeit gruppiert. Das Ziel bei diesem Vorgehen ist Zusammenhänge zwischen den verschiedenen Deponietypen und Kompartimenten zu erkennen, ohne die den Signalen zugrundeliegenden Stoffe zu kennen. Das Auftreten auffälliger Signalgruppen wird dann gemeinsam mit dem Wissen über die Probenherkunft interpretiert. Wenn beispielsweise ein statistischer Zusammenhang der auftretenden Stoffe und der Deponietypen vorhanden ist, wird eine Gruppierung der verschiedenen Signale im Cluster nach den Deponietypen erwartet.

Anhang 2 – Übersichtstabellen mit Resultaten und Grenzwerten Typ B – Typ E

Anhang 2 - Typ B Übersichtstabelle mit Resultaten und Grenzwerten Kanton Zürich, Deponiemonitoring - Pilotstudie Emerging Pollutants Alle Konzentrationen sind in [µg/l] angegeben.

Alle Konzentrationen sind in [µg/l] a		_																
				Stoffgruppe auf folgenden Deponletypen zu erwarten	Bisherig	e Untersuchungen	Typ B B01	Typ B B02	B03	Typ B B04	Typ B B05	Grenzwerte CH - GSchV	Grenzwerte CH G	Frenzwerte CH - AltiV		Grenzwerte U.S. (EPA Regional Screening Levels (RSLs) - Generic Tables; May 202 Maximum Zusatzinformation: Zusatz contaminant levels Protection of Ground Target Risi	10) Standortspez. information: Einleitbed. Für ks Tapwater, pgil Sickerwässer (Pi	PNEC (Predicted No Effect
Substanz	CAS	Bestimmungs grenze (BG)	Vorkommen / Herkunft (pro Stoffgruppe)	Deponietypen zu erwarten	Expertenrunde 2013+2016 (Stoffgruppen)	im Spezial-Deponie- monitoring Kt ZH	Nachsorge	in Betrieb	in Betrieb	in Betrieb in	Betrieb	- GSchV	- TBDV	- AltiV		for drinking water (**MCL) Water (calculated Soil Screening Levels (SSLs); µg/kg)	saltourspez. information: ss Tapwater; µgil sinformation: ss Tapwater; µgil Sickerwässer Sickerwässer Cos Sickerwasser	Effect Concentration)
				Typ A Typ B Typ C Typ D Typ E								Einleitung Anforderung Industrie- Wasserqualität abwasser (Anhang 2 GSchV)	Anhang 2	nhang 1 + erg. ste BAFU 2021	Tapwater	MCL Risk-based SSL Target SSL Risk = 1E-06 (Ti	Noncarcinogenic SL Child THI = 0.1 AWEL 2013 https://sub	substances ineris fr/fr/
Probenshmedatum	<u> </u>	<u> </u>				1	44434	44432	44438	44433	44432			Ste BAFO 2021		Risk = 1E-06 (Ti	HI = target hazard index)	
Temperatur (°C) Leitfahigkeit (µSlcm) pH-Wert Sauerstoff (mgl.)							14.5 1940 7.65	13.3 1110 8.02 10.2	13.5 2710 8.08 9.4	16.2 3800 7.5 8.1 82	13.2 1950 7.62							
Sauerstoffsättigung (%) Bromierte und Organophsphor-Flammschutzmittel							28	98	91	82	96							
Aligemeines Anzahl Substanzen > BG Hexabrombiphenyl (HxBB) Tribrombiphenyl (TriBB)	36355-01-8	8	Gebrauchsgegenstände, Bauabfälle	- x - x x	×	nicht untersucht	5 < BG	3 < BG	4 < BG	4 < BG	4 < BG				0.0026	0.0026	0.014 -	
Tribrombiphenyl (TriBB) Tetrabrombiphenyl (TeBB) Heptabrombiphenyl (HpBB) Octabrombiphenyl (OcBB)	51202-79-0 40088-45-7 35194-78-6 27858-07-7	7					< BG < BG < BG	< BG	< BG < BG < BG	< BG < BG	< BG < BG < BG < BG				- :			
Decambrombiphenyl (PBB-209)	27753-52-2 13654-09-6 41318-75-6	2 6					< BG < BG < BG	< BG < BG < BG	< BG < BG < BG	< BG < BG < BG	<bg <bg <rg< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></rg<></bg </bg 							
2.4.4-Tribromdiphenylether (BDE-28) 2.2.4.4-Testamondiphenylether (BDE-47) 2.2.4.4-6-Pentabromdiphenylether (BDE-100) 2.2.4.4-5-5-Hexabromdiphenylether (BDE-153) 2.2.4.4-5.5-Hexabromdiphenylether (BDE-154)	5436-43-1 189084-64-8 68631-49-2 207122-15-4	8					<bg <bg< td=""><td>< BG < BG</td><td>< BG < BG</td><td>< BG < BG</td><td>< BG < BG < BG < BG</td><td></td><td></td><td>-</td><td>0.2</td><td>5.4</td><td>0.2</td><td></td></bg<></bg 	< BG < BG	< BG < BG	< BG < BG	< BG < BG < BG < BG			-	0.2	5.4	0.2	
2.2.4.4.5.6'-Hexabromdphenylether (BDE-154) 2.2.3.4.4'.5'-B-Heptabromdphenylether (BDE-183) 2.2.3.3'.4.4'.5.5'-Beptabromdphenylether (BDE-197) 2.2.3.3'.4.4'.5.5'-B-Nonabromdphenylether (BDE-206)	207122-15-4 207122-16-5 117964-21-3 63387-28-0	5					< BG < BG < BG < BG	< BG < BG < BG	< BG < BG < BG < BG	< BG	< BG < BG < BG		-	-				
Decabromdiphenylether (BDE-209)	1163-19-5 3194-55-6	5					< BG < BG	< BG	< BG	< BG	< BG			-	14	7.8 . 110	14 0.2 µgl (S	(Kläranlage
Hexabromcyclododecan (HBCD, HxBB) Summe bromierte Flammschutzmittel Trisobutyphosphat (TBP) Tri-n-butyphosphat (TBP)	126-71-6 126-73-8						< BG	< BG	< BG < BG 0.004 0.017	4 B.C	< BG < BG 0.002 0.004							
Tris(2-chlorethyl)phosphat (TCEP)	126-73-8 115-96-8 13674-84-5	8 0.173					0.062 0.114 0.859	0.173	0.017 0.011 0.019	0.150	0.004 0.011 0.034		-	350 18	5.2 3.8	- 25 - 5.2	12 - 65 µg1	82µg1 (Süsswasse µg1 (Süsswasser); 32 µ (Kläranlag 120 µg1 (Süsswasse µl (Süsswasser); 10000
Tris(chlorpropyl)phosphat (TCPP) Tris(dichlorpropyl)phosphat (TDCPP) Trishenylphosphat (TPhP)	13674-87-8						0.001	0.076 < BG 0.000	< BG	< BG	< BG 0.000			-		- 36 -	360 - 1.1 µgl (gli (Süsswasser); 10000 µgli (Kläranlagi
Triphenylphosphat (TPhP) Tris-I/2,3-Ditrompropyli-Phosphat (TDBPP / TBPP) Summe Alkylphosphate Summe Alkylphosphate ohne TCPP	126-72-7	7 0.000					< BG 1.185 0.325	< BG 0.252 0.176	< BG 0.051 0.032	0.001 < BG 0.394 0.220	< BG 0.051 0.017					- 0.13 - 3.8		
Phthalate und Nonylphenole Allgemeines Anzahl Substanzen > BG			Welchmacher	- x - x x		teilweise untersucht	0	-4	- 4	1	-1							
Benzylbutylphthalate Dibutylphthalate	85-68-7						< BG	< BG < BG	< BG	< BG	< BG < BG		-	7000	16 90	- 0.24 - 16 - 0.23		gl (Süsswasser); 280 µ (Kläranlag gl (Süsswasser); 220 µ (Kläranlag
Diethylphthalate Dimethylphthalat	84-66-2 131-11-3	2 0.1					< BG < BG	< BG < BG	< BG < BG	< BG < BG	< BG < BG			12000 18000	1500	- 0.61	1500 -	(Kitranlagi 73 µgli (Süsswasse
Di-n-octylphthalat Bis(2-etrythexylphthalat Summe Phthalate Nonylphenole (Summerparameter)	117-84-0 117-81-7	0 0.1 7 0.1 0.05					< BG < BG < BG	< BG	< BG	< BG	< BG < BG < BG			700	5.6	6 1.3 1.4 5.6	40 - 20	201'000 µg/l (Kläranlage
Thiazole, Bisphenole und Acrylamid Algemeines		0.00	Korrosionsschutzmittel, Weichmacher, Farben	' x x - x x		teilweise untersucht	0.32	-50	-50	-50	-50		<u> </u>					
Aligemeines Anzahl Substanzen > BG 2Aminobenzothiazole 2Mercaptobenzothiazole	136-95-8	8 0.1 4 unterschiedlich je P 5 0.1	Aushub, Bauabfällen etc.	- · · · ×			4 <bg< td=""><td>0 < BG</td><td>0 < BG</td><td>1 < BG < BG</td><td>0 < BG < BC</td><td></td><td></td><td></td><td></td><td>- 0.018 - 6.3</td><td>72</td><td></td></bg<>	0 < BG	0 < BG	1 < BG < BG	0 < BG < BC					- 0.018 - 6.3	72	
2-Mercaptoberzothiazole 2-Methythioberzothiazole Benzothiazol 2(3H)-Benzothiazolo	149-30-4 615-22-5 95-16-9 934-34-9	4 unterschiedlich je P 5 0.1 9 5 9 0.1					<bg 0.2 <bg 0.7</bg </bg 				< BG < BG < BG		-		6.3	- 0.018 - 6.3	12 4	
Summe Thiazole Bisphenol-A	80-05-7	1			×	weitere Untersuchungen	0.9 2	< BG < BG	< BG < BG	0.2 < BG	< BG			-	77	5.8	77 1 1.6 µg/l(*	yl (Süsswasser); 32'000i µgil (Kläranlage
Bisphenol-A (Analysen 2014) Bisphenol-S Bisphenol-F Summa Bisphenole	80-05-7 80-09-1 620-92-8	1 0.1			x	weitere Untersuchungen	0.3 < BG	< BG < BG	< BG	< BG < BG	< BG < BG < BG	-						
Summe Bisphenole Acrylamid	79-06-1	1 0.1					2.3 < BG	< BG < BG	< BG < BG	< BG < BG	<bg <bg< td=""><td></td><td>0.1</td><td></td><td></td><td>- 0.011 - 0.05</td><td>4 . 20 µg1 (</td><td>gl (Süsswasser); 200 μ (Kläranlagi</td></bg<></bg 		0.1			- 0.011 - 0.05	4 . 20 µg1 (gl (Süsswasser); 200 μ (Kläranlagi
Perfluorierte Substanzen Algemeines			Brandschutz, Industrieanwendungen, Papierherstellung, Löschzusatz, Textilien	- x - x x		nicht untersucht												
Anzahi Substanzen > BG PFBA (Perfluorbutanssture) PFBS (Perfluorbutanssture) PFPeA (Perfluorpentansäure)	375-22-4 375-73-5 2706-90-3	4 0.05 5 0.01 3 0.05					< BG 0.016 < BC	6 < BG 0.031 < BG	0.13 0.127 0.16	0.42 0.738 0.88	0.07 0.024 0.06		-	700 350	40	13 -	40	
PFPeS (Perfluorpentansuffonsäure) PFHxA (Perfluorhexansäure) PFHxS (Perfluorhexansuffonsäure)	2706-90-3 2706-91-4 307-24-4 355-46-4	4 0.01 4 0.1					< BG 0.05 0.03	< BG 0.051 0.011	0.011 0.181 0.057	0.88 0.023 0.645 0.134	< BG 0.068 0.019		0.3	25 0.7				
PFHpA (Perfluorheptansäure) PFHpS (Perfluorheptansulfonsäure) PFOA (Perfluoroctansäure)	375-85-9 375-92-8 335-67-1	9 0.01 8 0.01 1 0.01					< BG 0.092	< BG 0.038	< BG 0.225	< BG 0.308	< BG 0.058	-	0.5	9				(Power
PFOS (Perfluoroctansulfonsäure) PFNA (Perfluoroctanssäure) PFDA (Perfluordecansäure)	1763-23-1 375-95-1 335-76-2	1 0.02 1 0.01 2 0.01					0.131 < BG < BG	0.018	0.142 0.014 < BG	0.01	0.025 < BG < BG		0.3	0.7			25 µgll (Sc	(Süsswasser); 9'050 μς (Kläranlage
PFDA (Perfluordecarnature) Summo (PFBA, PFPAA, PFHXA, PFHAA, PFOA, PFNA, PFBS, PFHX PFOS) µg TEQ/I Summo PFAS H4PFOS (6:2-Fluortelomersulfonsäure, 6:2-FTS)	xS,						0.396516	0.104141	0.803637		0.156104			0.05				
Aniline und Chforaniline	27619-97-2	2 0.02	Unable of Fabruary Vision and				< BG	< BG	< BG	< BG	< BG	-	-	-				
Algemeines Anzahl Substanzen > BG Anzahl Substanzen > BG (2014)	1	1	Herstellung von Farben und Kunstfasern und Arzneimittel	- x x	1	weitere Untersuchungen	1 1	0	0	1 0	0							
Anilin 3-Chlor-2-Methylanilin	62-53-3 87-60-5						0.4 < BG	< BG < BG	< BG < BG	0.1 < BG	< BG < BG	: :	-	50 4	13	- 4.6 - 13	149 -	(Süsswasser); 2'000 με (Kläranlage
4/5-Chlor-2-Methylanilin 2-Chloranilin 3-Chloranilin	95-69-2 95-51-2 108-42-9	2 0.1 2 0.1 9 0.1					< BG < BG < BG	< BG < BG < BG	< BG < BG < BG	< BG < BG	< BG < BG < BG		-	4 100 100	0.7	0.4 - 0.7	6	0.62 µgl (Süsswasser 600 µgl (Süsswasser
4-Chloraniin 2,3-Dichforaniin 2,4-Dichforaniin 2,5-Dichforaniin	106-47-8 608-27-5 554-00-7 95-82-9	5 0.1					< BG < BG < BG	< BG < BG < BG	< BG < BG < BG	< BG < BG < BG < BG	< BG < BG < BG			70 70 70	0.37	0.16 0.37	7.6	1 µgl (Süsswasse
2,6-Dichloranilin 3,4-Dichloranilin	608-31-1 95-76-1	1 0.1					< BG < BG	< BG < BG	< BG < BG	< BG < BG	< BG < BG		-	70 70			. 0.02 µg/ (:	gl (Süsswasser); 440 µg (Kläranlage
3,5-Dichloranilin 2,4-Dimethylanilin 2,6-Dimethylanilin	626-43-7 95-68-1 87-62-7	7 0.1					< BG < BG < BG	< BG < BG < BG	< BG < BG < BG	< BG	< BG < BG < BG		-	70 2 2	0.37	0.21 0.37	3.8	
3,5-Dimethylanlin N.N-Dimethylanlin m-Toluidn o-Toluidn	108-69-0 121-69-7 108-44-1 95-53-4	1 0.1 4 0.1					< BG < BG < BG	< BG < BG < BG	< BG < BG < BG	< BG < BG < BG < BG	< BG < BG < BG			70 20 20	2.5		3.5	0.1 µgl (Süsswasser 0.252 µgl (Süsswasser
p-Tokidin 2.3.4.Trichloraniin	106-49-0 634-67-3 636-30-6	0 0.1 3 0.1 6 0.1					< BG < BG < BG	< BG < BG < BG	< BG < BG < BG	< BG < BG < BG < BG < BG	< BG < BG < BG		-	10 10 10	4.7 2.5		1 1	0.252 μgf (Süsswasser 0.12 μgf (Süsswasser
2.4.5-Trichforariin 2.4.6-Trichforariin 3.4.5-Trichforariin 2.4.6-Trimetrykaniin 3.4.5-Trimetrykaniin	634-93-5 634-91-3 88-05-1	5 0.1 3 0.1 1 0.1					< BG < BG < BG	< BG < BG < BG	< BG < BG < BG	< BG < BG < BG 0.1	< BG < BG < BG			10 10 0.9	0.04	- 0.36 - 7.1	0.04 -	
Phenole und Chlorohenole			Herstellung von Kunststoffen, Arzneimittel	- x x		weitere Untersuchungen							1	-				
Algemeines Anzahl Substanzen > BG Phenol 2-Chlorphenol	108-95-2 95-57-8	2 0.1					2 < BG < BG	0 < BG < BG	0 < BG < BG	0 < BG < BG	0 < BG < BG		-	10000	580		580 . 7.7 µgfi (Sc	(Süsswasser); 2'100 μς (Kläranlage 6μgft (Süsswasser
Pentachlorphenol 4-Chlor-3-methylphenol 5.2,4-12,5-Dichlorphenol	87-86-5 59-50-7	5 0.1 7 0.1					< BG < BG	< BG < BG	< BG < BG	< BG < BG	< BG < BG			1 100	0.041 140	1 0.057 1.4 0.041 - 170	2.3 10	0.1 µgl (Süsswasser
2,4-Dimethylphenol o-Kresol m-Kresol p-Kresol	105-67-9 95-48-7 108-39-4 106-44-5	9 0.1 7 0.1 4 0.1					< BG < BG 0.1	< BG < BG < BG	< BG < BG < BG	< BG < BG < BG < BG < BG	< BG < BG < BG		-	2000 2000	36 93 93	- 42	36 - 93 - 12 µg/; 93 -	2.2 (Süsswasser ql; 3'300 µgl (Kläranlage 100 µgl (Süsswasser 100 µgl (Süsswasser
2.4,6-Trichlorphenol Summe Phenole und Chlorphenole	88-06-2	2 0.1					< BG 0.2	< BG < BG < BG	< BG < BG	< BG < BG	< BG < BG			200	1.2	12 4.1	12 -	4.1 µgl (Süsswasse
Chlorbenzole Algemeines			Lösungsmittel, Herstellung von Insektiziden, Farbstoffen, Arzneimitteln	- x x		weitere Untersuchungen												
Anzahi Subatanzen > BG Chiorbenzoi 1,2-Dichlorbenzoi 1,3-Dichlorbenzoi	108-90-7 95-50-1 541-73-1	7 0.05 1 0.05 1 0.05					< BG < BG	< BG < BG	< BG < BG	0 < BG < BG < BG	< BG < BG	: :		700 3000	7.8	100 5.3 68 - 600 30 580 -	7.8 100 2" 30 100	2'700 µgf (Süsswasser 6.3 µgf (Süsswasser 6 µgf (Süsswasser
1,4-Dichlorbenzol 1,2,3-Trichlorbenzol	106-46-7 87-61-6	7 0.05 6 0.05					< BG	< BG	< BG	< BG	< BG		-	10 270	0.48 0.7 0.4			(Süsswasser), 8'600 μς (Kitranlage 4 μgf (Süsswasser
1,2,4-Trichlorbenzol 1,3,5-Trichlorbenzol Summe Chlorbenzole	120-82-1 108-70-3	1 0.05 3 0.05								< BG < BG < BG				400 270	0.4	70 1.2 200 1.2	0.4 100	4 µgl (Süsswasse 4 µgl (Süsswasse
Nitroverbindungen Algemeines Anzahl Substanzen > BG				- x x		weitere Untersuchungen				0							<u> </u>	
Nitroberazol 2-Nitrophenol 4-Nitrophenol 2-4-Dintrophenol	98-95-3 88-75-5 100-02-7	5 0.1					< BG	< BG	< BG	< BG	< BG < BG < BG	-		10	0.14	. 0.092 . 0.14	1.3 . 38 μgl	ugt (Süsswasser); 92 μ (Kläranlagi
2,4-Dinitrotoluol	100-02-7 121-14-2	7 5 2 0.1				L	< BG	< BG	< BG	< BG	< BG		-	2000 50 0.5	0.24			gl (Süsswasser); 550 pg (Kläranlagi
2,6-Dinitrotoluol Summe Nitroverbindungen	606-20-2	2 0.1					< BG < BG	< BG < BG	< BG < BG	< BG < BG	< BG < BG			0.5	0.049	0.067 - 0.049	0.57	a man maddight
Flüchtige organische Verbindungen (VOC) Algemeines Anzahl Substanzen > BG Dichlardfluomethan (Freon 12)	76 74 -	8 000		· * · · *		weitere Untersuchungen	19 0.54	1 < 0.00	1 < 000	1 < BG	1 < R/2			7000	40	30	20	
Chlomethan Vinyichlorid Recognistion	74-87-3 75-01-4 74-83-9	8 0.05 3 unterschiedlich je P 4 0.05 9 0.5 3 0.05	Probe				<bg 0.1 <bg< td=""><td>< BG < BG < BG</td><td>< BG < BG < BG</td><td>< BG < BG</td><td>< BG < BG < BG</td><td></td><td>0.5</td><td>300 0.5</td><td>19 0.019 0.75</td><td>4.9</td><td>19 - 4.4 1 0.75 -</td><td></td></bg<></bg 	< BG < BG < BG	< BG < BG < BG	< BG	< BG < BG < BG		0.5	300 0.5	19 0.019 0.75	4.9	19 - 4.4 1 0.75 -	
Chlorethan Trichlorfluormethan (Freon 11) 1.1-Dichlorethen	75-69-4 75-35-4	4 0.05 4 0.05					< BG < BG < BG	< BG < BG < BG	< BG < BG < BG	< BG < BG < BG	< BG < BG < BG		4 4 4	900 10000 30	2100 520 28	- 590	2100 - 520 - 28 100 7	78.8 µg1 (Süsswasser 1950 µg1 (Süsswasser
Dichiormethan (Methylenchlorid) trans-1,2-Dichlorethen 1,1-Dichiorethan 2,2-Dichiorpropan	75-09-2 156-60-5 75-34-3 594-20-7	7 0.05				L	< BG 0.06 < BG	< BG < BG < BG	< BG < BG < BG	< BG < BG < BG	< BG < BG < BG		20	20 50 3000	11 36 2.8	5 2.7 1.3 11 100 11 31 - - 0.78 - 2.8		92 µgl (Süsswasser
cis-1,2-Dichlorethen Trichlormethan (Chloroform)	156-59-2 67-66-3	2 0.05 3 0.05					< BG	< BG	< BG	< BG	< BG < BG		-	50 40	3.6 0.22		5.7	ugil (Süsswasser); 48 µ (Kläranlagi
Bromchlormethan 1,1,1-Trichlorethan 1,1-Dichlorpropen Tetrachlorischlenstoff	74-97-5 71-55-6 563-58-6 56-23-5	6 0.05 6 0.05					< BG < BG < BG	< BG < BG < BG < BG	< BG < BG < BG	< BG < BG < BG < BG	< BG < BG < BG < RC		1	2000	8.3 800 - 0.46			26 µg/l (Süsswasse
Tetrachiorkohlenstoff 1,2-Dichlorethan Benzol	56-23-5 107-06-2 71-43-2						< BG 0.27 0.45	< BG < BG < BG	< BG	< BG	< BG < BG		3	3 10	0.46 0.17 0.46	5 0.23 2.6 0.46		2.5 µgf (Süsswasse 1'060 µgf (Süsswasse (Süsswasser); 1'300 µ (Kläranlage
Trichlorethen (Tri) 1,2-Dichlorpropan Broonlinksroathan	79-01-6 78-87-5 75-27-4	5 0.05					0.08 0.08 < BG	< BG < BG < BG	< BG < BG < BG	< BG	< BG < BG < BG		10	70 5	0.28 0.82	5 0.27 1.7 0.85	0.82 50 4	(Kläranlag (Süsswasser); 1'300 µ (Kläranlag 410 µgli (Süsswasse
Bromdichiormethan Dibrommethan cis-1,3-Dichlorpropen	75-27-4 74-95-3 10061-01-5 108-88-3	3 0.05 5 0.05					< BG < BG	< BG < BG	< BG < BG	< BG < BG	< BG < BG		-	-	0.13 0.83		38 - 0.83 5 - 74 µg/l (Sc	(Süsswasser); 8'400 µ
Toluol trans.1,3-Dichlorpropen 1,1,2-Tichlorethan 1,3-Dichlorpropan Tefrachlorethen (Per)	108-88-3 10061-02-6 79-00-5 142-28-9						0.08 < BG < BG < BG 0.05	< BG < BG < BG	< BG < BG < BG		< BG < BG < BG < BG 0.07	1 .	-	7000 - 140	0.041		0.041 - 3	(Kläranlagi 300 µgl (Süsswasse
1,3-Luchforpropan Tetrachlorethen (Per) Dibromchlormethan 1,2-Dibromethan	142-28-9 127-18-4 124-48-1 106-93-4 630-20-6	4 0.05					<bg 0.05 <bg <bg <bg< td=""><td>< BG < BG < BG</td><td>< BG < BG < BG</td><td></td><td>< BG</td><td></td><td>10</td><td>40</td><td>0.041 37 4.1 0.87 0.0075 0.57</td><td>5 0.014 1.6 0.28 - 0.013</td><td>37 - 4.1 100 38 - 17</td><td></td></bg<></bg </bg </bg 	< BG < BG < BG	< BG < BG < BG		< BG		10	40	0.041 37 4.1 0.87 0.0075 0.57	5 0.014 1.6 0.28 - 0.013	37 - 4.1 100 38 - 17	
Obromohormethan 1,2-Ditromethan 1,1,1,2-Tetrachlorethan Ethyloenzol	106-93-4 630-20-6 100-41-4	4 0.05					0.15	< BG	< BG	< BG	<bg <bg <bg< td=""><td></td><td></td><td>3000</td><td>0.0075 0.57 1.5</td><td></td><td>48</td><td>(Süsswasser); 9'600 μ (Kläranlage</td></bg<></bg </bg 			3000	0.0075 0.57 1.5		48	(Süsswasser); 9'600 μ (Kläranlage
m-Xyfoli p-Xyfol o-Xyfol Styrol	95-47-6 100-42-5						0.07	< BG < BG	< BG	< BG	< BG < BG		-	10000 10000 7000	19 120	. 19		1.3 µg1 (Süsswasse (Süsswasser); 5'000 µ (Kläranlag 22 µg1 (Süsswasse
aryou Boronoyibenzol Bromoform 1.1.2.2-Tetrachlorethan 1.2.3-Tinchkorpropan	98-82-8 75-25-2 79-34-5 96-18-4	8 0.05 2 0.05					0.06 < BG < PG	< BG < BG < RG	< BG < BG < RC		< BG < BG < BG < BG			3500	45 3.3 0.076 0.00075			(Kläraniag 22 µgli (Süsswasse 140 µgli (Süsswasse
n-Propythenzol	96-18-4 103-65-1 108-86-1	5 0.05 4 0.05 1 0.05 1 0.05 8 0.05					< BG < BG < BG	< BG < BG < BG	< BG < BG < BG	< BG < BG < BG	< BG < BG < BG			1 3500	0.076 0.00075 66 6.2	- 0.03 - 0.076 - 0.18	36 10 1 0.53 - 66 - 6.2 -	pyr (duss/MB550
Brombenzol 1,3,5-Trimethybenzol 2-Chlorobaol 4-Chlorobaol	103-65-1 108-86-1 108-67-8 95-49-8 106-43-6	8 0.05 8 0.05 4 0.05					< BG < BG < BG	< BG < BG < BG	< BG < BG < BG	< BG	< BG < BG < BG			350 700	24 25	- 23	6 - 24 - 25 -	8 µgf (Süsswasse 32 µgf (Süsswasse
tert-Butytberzol 1,2,4 - Timrethytberzol sec-Butytberzol p-Isopropytotuol	98-06-6 95-63-6 135-98-8 99-87-6 104-51-8	6 0.05					0.1	- BG	- BG	- BG	c BG		1	3500 350 3500 3500	5.6 200	8.1	5.6 - 200 -	
n-Butylberzol 1,2-Dibrom-3-chlorpropan Hexachlorbutadien	96-12-8	8 0.05 0.05 - 5					< BG	< BG	< BG < BG < BG	< BG	< BG < BG < BG			1800	100 0.00033		100 -	
Naphthalin Freon 113	91-20-3 76-13-1	3 0.05 1 0.05					0.54 < BG	< BG < BG	< BG < BG	< BG < BG	< BG	-	-	1000	0.12 1000	- 0.39 0.12 - 2600	1000	Süsswasser); 29'000 µ (Kläranlag
MTBE (Methylkertiärbutylether) ETBE (Ethylkertiärbutylether) Aliph. KW (C5-C10) (µgL)	1634-04-4 637-92-3						0.59 < BG < BG	< BG < BG < BG	< BG < BG < BG	< BG	< BG < BG < BG		-	200 42000 2000	14	- 3.2 - 14	630 . 2'600 µgll (\$	yl (Süssawasser); 71'00 µgl (Kläranlag
Summe BTEX							0.91 0.59	0	0	0 0 0 660	0		3 5 50	-				
Summe M 164-Ye 16E Summe Thislomethane (THM) Summe HalogenKW C1-C3 Summe HalogenKW C1-C3 (Johne Methylenchlorid) Total über alles: Anzahl Substanzen > BG							1.17	2.72	2.57	660 0	0.07		10					
Total über alles: Anzahl Substanzen > BG Arznelmittel, Pestizide, Süssstoffe und Korrosionsschutzmittel (Anzahl Substanzen > BG	(GS-Labor)	<u> </u>	-			·												

Anhang 2 - Typ C Übersichtstabelle mit Resultaten und Grenzwerten Kanton Zürich, Deponiemonitoring - Pilotstudie Emerging Pollutants Alle Konzentrationen sind in [µg/I] angegeben.

Alle Konzentrationen sind in [µg/l] ang	jegeben.		ı	Bisherige Unte	rsuchungen Typ	C Tun C	Two C							Grannwarta II S				
			Stoffgruppe auf folgenden	bishenge once	rsuchungen Typ	C Typ C	Typ C C03	Gre	enzwerte CH - GSchV	Grenzwerte CH - TBDV	Grenzwerte CH - AltiV		(EPA Regional Screen	ring Levels (RSLs) - G Zusatzinformation: Protection of Groun			Standortspez. Einleitbed. Für Sickerwässer	PNEC (Predicted No
Substanz	CAS Bestimmungs- grenze (BG)	Vorkommen / Herkunft (pro Stoffgruppe)	Deponietypen zu erwarten	Expertenrunde is 2013+2016 (Stoffgruppen)	m Spezial-Deponie- monitoring Kt ZH	rieb in Betrieb	Nachsorge		- GSchV	- TBDV	- AltiV		for drinking water (**MCL) (Water calculated Soil Screen Levels (SSLs); µg/kı	ning		Sickerwässer aus Deponien, Höchstwert Sickerwasser	(Predicted No Effect Concentration)
			Typ A Typ B Typ C Typ D Typ E					Einleitung Industrie-	Anforderung Wasserqualität	Anhang 2	Anhang 1 + erg. Liste BAFU 2021	Tapwater	MCL F	Risk-based MCL-ba	Carcinogenic SL Target Risk = 1E-06	Noncarcinogenic SL Child THI = 0.1 (THI = target hazard index)	AWEL 2013	https://substances.ineris.fr/fr/
Probenahmedatum					4443	39 44438 2 18.5	44461	abwasser	(Anhang 2 GSchV)		LIST DA G TOT!				= 1E-06	(THI = target hazard index)		
Temperatur (*C)					23: 665 7.6	2 18.5 0 4390 6 7.28 4.4 47	14.2 10300 12.2 9.7											
Bromierte und Organophsphor-Flammschutzmittel							94											
Augemenes Anzahl Substanzen > BG Hexabrombiphenyl (HxBB) Tirbrombiphenyl (TiBB) Tetrabrombiphenyl (TiBB)	36355-01-8 51202-79-0	Gebrauchsgegenstände, Bauabfälle	- x - x x	x nicht	untersucht	3 G < BG G < BG G < BG G < BG	4 < BG < BG	:				0.0026			. 0.0026	0.014		
Heptabrombiphenyl (HpBB)	51202-79-0 40088-45-7 35194-78-6 27858-07-7 27753-52-2 13654-09-6				< B < B < B	G	< BG											
Decambrombiphenyl (PBB-209) 2,4,4-Tribromdiphenylether (BDE-28) 2,2',4,4-Tetrabromdiphenylether (BDE-47)	13654-09-6 41318-75-8 5436-43-1 189084-64-8 68631-49-2				< B < B < B	G < BG	< BG	-			:	0.2		5.4	: :	0.2		
Decimbonospheni (1982-20) 2.4.4. Thermodyneither (1602-20) 2.2.4.6.5 Pentabonosphenie (1602-20) 2.2.4.6.5 Pentabonosphenie (1602-40) 2.2.4.6.5 Pentabonosphenie (1602-40) 2.2.4.6.5 Pentabonosphenie (1602-40) 2.2.4.6.5 Pentabonosphenie (1602-40) 2.2.4.6.6 Pentabonosphenie (1602-40) 2.2.3.4.6.6 Pentabonosphenie (1602-40) 2.2.3.4.6.6 Pentabonosphenie (1602-40) 2.2.3.4.6.6 Pentabonosphenie (1602-40)	189084-64-8 68631-49-2 207122-15-4 207122-16-5				< B < B < B	G	< BG < BG < BG < BG < BG < BG											
2.2.3.3.4.4.6.6-Octabromdiphenylether (BDE-197) 2.2.3.3.4.4.6.5.6-Nonabromdiphenylether (BDE-206) Decabromdiphenylether (BDE-209)	117964-21-3 63387-28-0 1163-19-5				< B < B	G < BG	< BG < BG < BG					14		7.8	. 110	14		0.2 µg/l (Süsswasser); 1500 µg/l
Hexabromoyclododecan (HBCD, HxBB)	3194-55-6				< B		< BG							-				(Kläranlage) 0.31 µg/l (Süsswasser); 150 µg/l (Kläranlage)
Summe bromierte Flammschutzmittel Trissobutylphosphat (TBP) Trin-butylphosphat (TBP) Tris(2-chlorethyl)phosphat (TCEP)	126-71-6 0.127 126-73-8 0.096 115-96-8 0.078				0.12 0.09 0.04	7 0.076 12 0.096	0.001 0.013 0.005	:			350 18	5.2 3.8		25 3.8	5.2	12 14		82µg/l (Süsswasser) 65 µg/l (Süsswasser); 32 µg/l
Tris(chlorpropyl)phosphat (TCPP) Tris(dichlorpropyl)phosphat (TDCPP)	13674-84-5 0.740 13674-87-8 0.000				0.36	10 < BG	0.009 < BG				-		-	65	36	190 360	-	(Kläranlage) 120 μg/l (Süsswasser) 1.1 μg/l (Süsswasser); 100000 μg/l (Kläranlage)
Triphenylphosphat (TPhP) Trist/2,3-0brompropyl)-Phosphat (TDBPP / TBPP) Summe Alkylphosphate Summe Alkylphosphate ohne TGPP	0.003 128-72-7 0.000				0.00 < B 0.63	3 < BG G < BG 18 0.990 19 0.251	0.000 < BG 0.028	:						0.13	3.8			10 (
Phthalate und Nonylphenole		Weichmacher	- x - x x	teilwe	eise untersucht						*		-1	1	1 1		1	
Anzahl Substanzen > BG Benzylbutylphthalate	85-68-7 0.1				< B	G < BG	2 < BG				7000	16		0.24	- 16	170		7.5 µg/l (Süsswasser); 280 µg/ (Kläranlage 010 µg/l (Süsswasser); 220 µg/l
Dibutylphthalate Diethylphthalate Dimethylphthalat Di-e-cstylphthalat Di-e-cstylphthalat	84-74-2 0.1 84-86-2 0.1 131-11-3 0.1				< B < B < B	G < BG	< BG < BG < BG	- :			12000 18000	90 1500	-	0.23 0.61		90 1500	-	(Kläranlage 73 µg/l (Süsswasser
Di-n-oct/lphthalat Bis(2-ethylhexyl)phthalat Summe Phthalate Nonylphenole (Summenparameter)	131-11-3 0.1 117-84-0 0.1 117-81-7 0.1				< B < B < B	G	< BG < BG 0.1 0.1 0.46	:			700	5.6	6	1.3	1.4 5.6	40		201'000 μg/l (Kläranlage) 0.644
Thiazole, Bisphenole und Acrylamid Algemeines	1 0.00	Korrosionsschutzmittel, Weichmacher, Farben, Aushub, Bauabfällen etc.	x x - x x	teilus	eise untersucht					'	1							0.04
Anzahl Substanzen > BG 2.//minobenzethiazele	136-95-8 0.1 149-30-4 unterschiedlich je Prob			ocal We	5 < B	3 G < BG G < BG 0.5 G < BG	2 < BG 0.2 < BG < BG					p -		0.018		7.0		
2.Mercaptoben.comissarie 2.Mercaptoben.comissarie Benzothiazole Grandhiazole Grandhiazole Summe Thiazole	615-22-5 0.1 95-16-9 5 934-34-9 0.1				0.5 < B 13.	0.5 G < BG 1 1 6 1.5	< BG < BG 2.5 2.7											
Summe Thiazole Bisphenol-A Bisphenol-A (Analysen 2014) Bisphenol-S	80-05-7 1				itere Untersuchungen 90		2.7 < BG 0.5 < BG				-	77		5.8		77	1	1.6 µg/l (Süsswasser); 32'0000 µg/l (Kläranlage)
Supmenoi-F Summe Bisphenole	620-92-8 1				1500 1500	00 < BG 92 0.1	< BG < BG	:						-			-	20 µg/l (Süsswasser); 200 µg/l
Acrylamid Perfluorierte Substanzen	79-06-1 0.1				< B	G < BG	< BG	<u> </u>		0.1	-		-	0.011	- 0.05	4		20 µg/l (Süsswasser); 200 µg/l (Kläranlage)
Allgemeines Anzahl Substanzen > BG	375-22-4 0.05	Brandschutz, Industrieanwendungen, Papierherstellung, Löschzusatz, Textilien	- x - x x	nicht	untersucht 12	: 13 G 0.46	1 < BG											
PFBS (Perfluorbutansulfonsäure) PFPeA (Perfluorpentansäüre) PFPeA (Perfluorpentansüüre)	375-73-5 0.01 2706-90-3 0.05 2706-91-4 0.01				0.33 0.2	1 1.33 1 0.59	< BG < BG < BG < BG				700 350 100	40		13		40		· · · · · · · · · · · · · · · · · · ·
PERA (Perticorbatesation) PERS (Perticorbatesationshare) PEPSA (Perticorpentansation) PEPSA (Perticorpentansationshare) PEPSA (Perticorpentansationshare) PEPSA (Perticorbetansationshare) PEPSA (Perticorbetansationshare) PEPSA (Perticorbetansationshare) PEPSA (Perticorbetansationshare)	307-24-4 0.01 355-46-4 0.1 375-85-9 0.01 375-92-8 0.01				0.41 0.36 0.13	5 0.949 12 0.812 19 0.401 18 0.052 9 0.798	< BG < BG < BG < BG			0.3	25 0.7 9							
PFOS (Perliuoroctansulfonsäure)	335-67-1 0.01 1763-23-1 0.02				0.79	2 1.34	< BG 0.015			0.5	0.6 0.7		-	-				25 µg/l (Süsswasser); 9'050 µg/l (Kläranlage)
PFNA (Perfluornonansäure) PFDA (Perfluordocansäure) Summe (PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFNA, PFBS, PFHxS, PFOS) us TEQII	375-95-1 0.01 335-76-2 0.01				0.02 0.02 2.555	11 0.033 16 0.011 181 4.75952	< BG < BG 0.03				0.05		-		1 1	:		:
Summe PFAS H4PFOS (6:2-Fluortelomersulfonsäure, 6:2-FTS)	27619-97-2 0.02					6.922 2 0.25					:							
Aniline und Chloraniline Aligemeines Anzahl Substanzen > RG		Herstellung von Farben und Kunstfasern und Arzneimittel	- × ×	weite	re Untersuchungen								1					
Anzahi Substanzen > BG Anzahi Substanzen > BG (2014) Aniin	62-53-3 0.1				7	0.1	0 < BG				50	13		4.6	. 13	14		1.5 µg/l (Süsswasser); 2'000 µg/l (Kläranlage)
3-Chlor-2-Methylanilin 4/5-Chlor-2-Methylanilin 2-Chloranilin	87-60-5 0.1 95-69-2 0.1 95-51-2 0.1 108-42-9 0.1 106-47-8 0.1				< B < B 2	G < BG G < BG 0.2 < BG G < BG	< BG < BG < BG < BG < BG				4 4 100	0.7		0.4	0.7	5.4		0.62 µg/l (Süsswasser) 600 µg/l (Süsswasser)
2-Chicaralin 2-Chicaralin 4-Chicaralin 4-Chicaralin 2-3-Dichicaralin 2-4-Dichicaralin	608-27-5 0.1 554-00-7 0.1				1 < B < B	< BG	< BG < BG < BG				100 100 70 70	0.37	-	0.16	0.37	7.6		1 µg/l (Süsswasser)
2,5-Dichloranilin 2,6-Dichloranilin 3,4-Dichloranilin	95-82-9 0.1 608-31-1 0.1 95-76-1 0.1				< B	G < BG G < BG	< BG < BG				70 70 70		-			-		0.02 μg/l (Süsswasser); 440 μg/l (Kläranlage)
3,5-Dichloramlin 2,4-Direshylamlin 2,4-Direshylamlin 3,5-Direshylamlin 3,5-Direshylamlin NA-Direshylamlin	626-43-7 0.1 95-68-1 0.1 87-62-7 0.1				< B < B	G < BG G 0.1 G < BG	< BG < BG < BG				70 2 2	0.37	-	0.21	0.37	3.8	:	i (vananage)
N,N-Dimethylanilin m-Toluidin g-Toluidin	108-69-0 0.1 121-69-7 0.1 108-44-1 0.1 95-53-4 0.1 106-49-0 0.1				< B	G	< BG < BG < BG < BG < BG				2 70 20 20	2.5 - 4.7 2.5		0.9	- 2.5 - 4.7 - 2.5	3.5		0.1 µg/l (Süsswasser) 0.252 µg/l (Süsswasser) 0.12 µg/l (Süsswasser)
Totacin paraiss modular parais	106:49-0 0.1 634:67-3 0.1 636:30-6 0.1 634:93-5 0.1 634:91-3 0.1				1 <b <b< td=""><td>< BG G < BG</td><td>< BG < BG < BG < BG < BG</td><td></td><td></td><td></td><td>10 10 10</td><td>2.5</td><td></td><td>0.36</td><td>2.5</td><td>7.7</td><td>-</td><td>0.12 μg/l (Süsswasser)</td></b<></b 	< BG G < BG	< BG < BG < BG < BG < BG				10 10 10	2.5		0.36	2.5	7.7	-	0.12 μg/l (Süsswasser)
2,4,6-Trimethylanilin Summe Aniline und Chloraniline	834-91-3 0.1 88-05-1 0.1				< B < B	G < BG G < BG 0.6	< BG < BG < BG				10	0.04		4				
Phenole und Chlorphenole Aligemeines Angel Substanzan N.B.G.	I I	Herstellung von Kunststoffen, Arzneimittel	- x x	weite	re Untersuchungen	0	1 0	ı										
Phenol 2-Chlorphenol	108-95-2 0.1 95-57-8 0.1				421 < R	0 < BG	< BG < BG				10000 200	580 9.1		330 8.9		580 9.1		7.7 µgil (Süsswasser); 2°100 µgil (Kläranlage) 6µgil (Süsswasser) 0.1 µgil (Süsswasser)
Phenol 2. Chlophenol Pentachiophenol 4. Chlophenol Pentachiophenol 4. Chlophenol 4. Chlophenol 4. Chlophenol 4. Chlophenol 5. 2. 4-12. Sp. Unitorphenol 2. 2. 4-12. Sp. Unitorphenol 5. 2. 4-12. Sp. Unitorphenol 5. 4. Chlophenol	87-86-5 0.1 59-50-7 0.1 0.1 105-67-9 0.1				< B < B < B	G < BG G < BG G < BG G < BG	< BG < BG < BG < BG				100	0.041 140 36	1	0.057 170 42	1.4 0.041	2.3 140		2.2 (Süsswasser)
2.4-Uniterrypatrial C-Kresel Th-Kresel Th-Kresel Z-4.6-Trichhophenol Summe Phenole und Chlorphenole	95:48-7 0.1 108:39-4 0.1 106:44-5 0.1 88:06-2 0.1				127 < B 25	7	< BG < BG < BG				2000 2000 200	93 93 190		75 74 150		36 93 93 190 1.2		12 μg/l; 3'300 μg/l (Kläranlage) 100 μg/l (Süsswasser) 100 μg/l (Süsswasser) 4.1 μg/l (Süsswasser)
Summe Phenole und Chlorphenole Chlorbenzole	00-00-2 0.1					8 < BG	< BG					1,2	1	1.2	* **.1	1.2		4. i pgri (ausswasser)
Allgemeines Anzahl Substanzen > BG	108-90-7 0.05	Lösungsmittel, Herstellung von Insektiziden, Farbstoffen, Arzneimitteln	- x x	weite	re Untersuchungen	0 < BG < BG	0 < BG < BG				700	7.8	100	5.3	68	7.8	100	2700 ug/l (\$0sswasser)
Chlorbenzol 1,2-Dichlorbenzol 1,3-Dichlorbenzol 1,4-Dichlorbenzol	108-90-7 0.05 95-50-1 0.05 541-73-1 0.05 108-46-7 0.05				1.8 < B	G < BG	< BG < BG < BG	:			3000 3000 10	0.48	600	30 - 46	580 - 72 0.48	30	100 100 100	2700 µg/l (Süsswasser) 6.3 µg/l (Süsswasser) 6 µg/l (Süsswasser) 20 µg/l (Süsswasser), 8'600 µg/l
1,2,3-Trichlorbenzol 1,2,4-Trichlorbenzol 1,3,5-Trichlorbenzol Summe Chlorbenzole	87-61-6 0.05 120-82-1 0.05 108-70-3 0.05				< B < B < B	G < BG G < BG G < BG	< BG < BG < BG	:			270 400 270	0.7		2.1 1.2	200 1.2	0.7 0.4		(Kläranlage) 4 µg/l (Süsswasser) 4 µg/l (Süsswasser) 4 µg/l (Süsswasser)
Summe Chlorbenzole Nitroverbindungen Aligemeines Anzahl Substanzen > BG					2.6 re Untersuchungen	< BG	< BG											
Nitrobenzol	98-95-3 0.1		, , , x	weite	0 < B	0 G < BG	0 < BG				10	0.14		0.092	0.14	1.3		38 µg/l (Süsswasser); 92 µg/l (Kläranlage)
2-Nitrophenol 4-Nitrophenol 2,4-Dinitrophenol	88-75-5 0.1 100-02-7 0.1 100-02-7 5				< B	G < BG G < BG G < BG	< BG < BG < BG	=			2000 50			4.4		3.9		2 µg/l (Süsswasser); 550 µg/l (Kiäranlage)
2,4-Dinitrotoluol 2,6-Dinitrotoluol Summe Nitroverbindungen	121-14-2 0.1 606-20-2 0.1				< B < B	G < BG G < BG G < BG	< BG < BG < BG				0.5	0.24		0.32 0.067	0.24	3.8 0.57		(Kiāranlage)
Flüchtige organische Verbindungen (VOC) Allgemeines Anzahl Substanzen > BG Dichliedfillowmethan (Freon 12)			- x x	weite														
Unvichlorid	75-71-8 0.05 74-87-3 unterschiedlich je Prob 75-01-4 0.05 74-83-9 0.5	e			< B < B	9	< BG < BG < BG < R/2			0.5	7000 300 0.5	20 19 0.019 0.75	2		0.69 0.019	20 19 4.4 0.75	1	
Brommethan Chlorethan Trichlorfluormethan (Freon 11) 1,1-Dichlorethen	75-00-3 0.05 75-09-4 0.05 75-89-4 0.05 75-35-4 0.05				< B	G < BG G < BG G < BG	< BG < BG < BG				900 10000 30	2100 520 28	7	0.19 590 330 10 2.7	2.5	0.75 2100 520 28	100 100	78.8 µg/l (Süsswasser) 1'650 µg/l (Süsswasser)
1.1-Dichlorethen Dichlorenthen Dichlorenthenia (Methylenchlord) trans-1.2-Dichlorethen 1.1-Dichlorethan 2.2-Dichlorethan 2.2-Dichlorethan 5.1-2-Dichlorethen	74-03-9 0.05 75-00-3 0.05 75-69-4 0.05 75-35-4 0.05 75-35-4 0.05 75-36-5 0.05 75-36-3 0.05 75-34-3 0.05 75-34-3 0.05 75-34-3 0.05 75-34-3 0.05 75-34-3 0.05				100 < B < B	0 0.15 G < BG G 0.17 G < BG : 0.22	22.5 < BG < BG < BG < BG			20	20 50 3000	11 36 2.8	100	2.7 11 0.78	1.3 11 31 - 2.8	11 36 380		1°650 µg/l (Süsswasser) 92 µg/l (Süsswasser)
Trichlormethan (Chloroform)	67-66-3 0.05				< B	G < BG	< BG				50 40	3.6 0.22		0.061	21 0.22	3.6 9.7		146 µg/l (Süsswasser); 48 µg/l (Kläranlage)
Bromchlormethan 1,1,1 Triothiorethan 1,1-1 Chilothopropen 1-1 Chilothopropen Tetrachiorkoltenstoff 1,2-Chilothoprothan 1,2-Chilothoprothan	74-97-5 0.05 71-55-6 0.05 563-58-6 0.05 56-23-5 0.05				< B < R	G < BG G < BG G < BG G < BG G < BG G 0.17	< BG < BG < BG				2000	8.3 800 0.46	-	2.1 280 0.18	70 - 1.9 0.46	8.3 800 - 4.9		26 µg/l (Süsswasser)
Benzol	107-06-2 0.05 71-43-2 0.05				3.2	0.08	< BG		-	3	3 10	0.46 0.17 0.46	5	0.048 0.23	1.4 0.17 2.6 0.46	4.9 1.3 3.3	100	2.5 µg/l (Süsswasser) 1'060 µg/l (Süsswasser) 80 µg/l (Süsswasser); 1'300 µg/l (Kläranlage) 115 µg/l (Süsswasser); 1'300 µg/l (Kläranlage)
Trichlorethen (Tri) 1.2-Dichlorpropan Bromdichlormethan	79-01-8 0.05 78-87-5 0.05 75-27-4 0.05				< B 0.6 < B	0.1 G < BG	< BG < BG < BG			10	70 5	0.28 0.82 0.13		0.1 0.27 0.037	1.8 0.49 1.7 0.85 22 0.13	0.28 0.82 38 0.83	100 50	115 µg/l (Süsswasser); 1'300 µg/l (Kläranlage) 410 µg/l (Süsswasser)
Bromdichlormethan Dibrommethan Gist 1,3-Dichlorpropen Toluol	74-95-3 0.05 10061-01-5 0.05 108-88-3 0.05				< B < B	G < BG G < BG I < BG	< BG < BG < BG	:			7000	0.83	1000	0.21	0.69	0.83		74 μg/l (Süsswasser); 8'400 μg/l (Kläranlage)
trans-1,3-Dichlorpropen 1,1,2-Trichlorethan 1,3-Dichlorpropan Tetrachlorethen (Per) Dibenochlorethen	10061-02-6 0.05 79-00-5 0.05				< B < B	G < BG G < BG	< BG < BG				140	0.041 37	5	0.014	1.6 0.28	0.041		(Kläranlage 300 µg/l (Süsswasser
Tetrachlorethen (Per) Dibromchlormethan 1,1,1,2-Tetrachlorethan	127-18-4 0.05 124-48-1 0.05 106-93-4 0.05 630-20-6 0.05				< B < P	G 0.09 G < BG G < BG G < BG	< BG < BG < BG < BG			10	40 0.05	37 4.1 0.87 0.0075 0.57	5 80 0.05		0.0023 11 21 0.87 0.014 0.0075 - 0.57	37 4.1 38 1.7 48	100	
Ethylphenzol m-Xytol/ p-Xytol o-Xytol	100-41-4 0.05 0.05 95-47-6 0.05				1.1 1 0.6	< BG	< BG	-			3000 10000 10000	1.5	700	1.7	790 1.5	81	-	100 μg/l (Süsswasser); 9'600 μg/l (Kläranlage)
Chamil	95-47-6 0.05 100-42-5 0.05 98-82-8 0.05 75-25-2 0.05				< B		< BG < BG < BG < BG	-			7000 7000 3500	19 120 45	100	19 130 74	110 -	19 120 45		1.3 µg/l (Süsswasser) 40 µg/l (Süsswasser); 5'000 µg/l (Kläranlage) 22 µg/l (Süsswasser)
Bromoform 1,1,2,2-Tetrachiorethan 1,2,3-Tichlorpropan n-Promythespel	75-25-2 0.05 79-34-5 0.05 96-18-4 0.05 103-65-1 0.05 108-65-1 0.05 108-67-8 0.05				< B < B	S	< BG < BG < BG				1 1 3500	3.3 0.076 0.00075	80	74 0.87 0.03 0.18 0.12	21 3.3	0.53	10	140 µg/l (Süsswasser
soproi soproiphemad soproiphemad 1.3.2.2 Tenderbreethem 1.3.2.3 Tenderbreethem 3.3.4 Tenderbreethem 5.4 Tenderbreethemad 5.4 Tenderbreethemad 6.4 Tenderbreethemad 6.5 Tenderbr	103-65-1 0.05 108-86-1 0.05 108-67-8 0.05 95-49-8 0.05				< B < B < R	G	< BG < BG < BG				3500 - 350 700	66 6.2 6 24		0.12 4.2 8.7		66 6.2		8 µg/l (Süsswasser
4-Chlortoluol tert-Butylbenzol 1,2,4-Tirmethylbenzol sec-Butylbenzol	95.49-8 0.05 106.43-4 0.05 98.06-6 0.05 95.63-6 0.05 135.98-8 0.05 99.87-6 0.05				< B < B 0.6	G < BG G < BG G < BG G < BG G < BG					3500 3500 3500	25 69 5.6 200		23 24 160 8.1 590		24 25 69 5.6 200		8 µg/l (Süsswassei 32 µg/l (Süsswassei
	135-98-8 0.05 99-87-6 0.05 104-51-8 0.05 96-12-8 0.05 0.05 - 5					G	< BG < BG < BG < BG < BG < BG				3500 3500 1800	200 100 0.00033	-	320	0.086 0.00033	200 - 100 0.037		
Naphthalin Freon 113	0.05 - 5 91-20-3 0.05 76-13-1 0.05				2.3		< BG < BG < BG	-			1000	0.12		0.39	0.12	0.61		2 μg/l (Süsswasser); 29'000 μg/ (Kläranlage
MTRF (Methyltertiärhutylether)	76-13-1 0.05 1634-04-4 0.05 637-92-3 0.05				1.5		< BG < BG				200 42000	14	-	3.2	- 14	630		2'600 µg/l (Süssawasser); 71'000 µg/l (Kläranlage
ETBE (Ethylteriathusylyther) Alph, KW (CS-C10) (ug/L) Summe BTEX Summe MTBE+ETBE Summe MTBE+ETBE Summe MTBE+ETBE Summe MTBE+ETBE Summe MTBE+ETBE Summe MTBE+ETBE Summe MTBE-ETBE Summe MTBE-ET	10				< B 6.8	G < BG 0.17	< BG	-		3 5	2000							
Summe HalogenKW C1-C3 Summe HalogenKW C1-C3 (ohne Methylenchlorid) Total über alles: Anzahl Substanzen > BG						0.23 0 .8 0.73 0.68				10								
Total über alles: Anzahl Substanzen > BG Arzneimittel, Pestizide, Süssstoffe und Korrosionsschutzmittel (GS-L Anzahl Substanzen > BG	abor)	·			*	32			<u> </u>									
					1 2													

Anhang 2 - Typ D Übersichtstabelle mit Resultaten und Grenzwerten Kanton Zürich, Deponiemonitoring - Pilotstudie Emerging Pollutants Alle Konzentrationen sind in [µg/l] angegeben.

Alle Konzentrationen sind in [µg/l] a	ngegebe	en.	Pollutants		Dieboolee		7-0	T D	T-0	T - D	T D									
				Stoffgruppe auf folgenden	Bishenge	Untersuchungen	Typ D D01	Typ D D02	Typ D D03	Typ D D04	D05	Grenzwerte CH - GSchV	Grenzwerte CH - TBDV	Grenzwerte CH - AltiV		(EPA Regional Scr Maximum contaminant levels	Zusatzinformation: Protection of Ground	ric Tables; May 2020) Zusatzinformation: Target Risks Tapwater; µg/l	Standortspez. Einleitbed. Für Sickerwässer aus Deponien, Höchstwert Sickerwasser	PNEC (Predicted No Effect Concentration)
Substanz	CAS	Bestimmungs- grenze (BG)	Vorkommen / Herkunft (pro Stoffgruppe)	Deponietypen zu erwarten	Expertenrunde 2013+2016 (Stoffgruppen)	im Spezial-Deponie- monitoring Kt ZH	in Betrieb	in Betrieb	Nachsorge	in Betrieb	in Betrieb	- GSCNV	- IBDV	- AltiV		for drinking water (**MCL)	Water (calculated Soil Screening Levels (SSLs); µg/kg)		Höchstwert Sickerwasser	Concentration)
				Typ A Typ B Typ C Typ D Typ E								Einleitung Anforderung Industrie- Wasserqualität abwasser (Anhang 2 GSchV)	Anhang 2	Anhang 1 + erg. Liste BAFU 2021	Tapwater	MCL	Risk-based MCL-based *SSL SSL	Carcinogenic Noncarcinogenic SL Target SL Child THI = 0: Risk = 1E-06 (THI = target hazard in	1 AWEL 2013	https://substances.ineris.fr/fr/
Probenahmedatum Temperatur (°C) Leitfähigkeit (pSicm)							44438 29.2	44446 23.2	44440 36.8	44432 30.3	44438 28.2									
Emianishen (pascin) pH-Wert Sauerstoff (mg/L) Sauerstoffsättigung (%)							7.67 2.7 35	8.67 <0.1 <1	7.6 3.3 50	30.3 35900 8.77 6.7 89	7.84 5.6 72									
Bromierte und Organophsphor-Flammschutzmittel Algemeines Anzahl Substanzen > BG			Gebrauchsgegenstände, Bauabfälle	. x . x x	×	nicht untersucht				3 < BG				I						
Hexabrombiphenyl (HxBB) Tribrombiphenyl (TriBB) Tetrabrombiphenyl (TeBB) Heptabrombiphenyl (TeBB)	36355-01-8 51202-79-0 40088-45-7 35194-78-6						< BG < BG < BG	< BG < BG < BG < BG	< BG < BG < BG < BG	< BG	< BG < BG < BG < BG	-		-	0.0026			0.0026	0.014	
Hestatrombiphenyl (HsBB) Octatrombiphenyl (HsBB) Nonabrombiphenyl (HsBB) Decambrombiphenyl (HsBB 209) 24.4*Titrombiphenylter(HsBB 209) 22.4.4*Titrombiphenylter(HsBB 205)	35194-78-6 27858-07-7 27753-52-2 13654-09-6 41318-75-6						< BG	< BG	C BG	C BG	C BG									
2.2'.4.4'-Tetrabromdiphenylether (BDE-47) 2.2'.4.4'.6-Pentabromdiphenylether (BDE-100) 2.2'.4.4'.5-Pentabromdiphenylether (BDE-153) 2.2'.4.4'.5.6'-Hexabromdiphenylether (BDE-154)	5436-43-1 189084-64-8 68631-49-2 207122-15-4						< BG < BG < BG	< BG < BG < BG < BG	< BG < BG < BG < BG	< BG < BG < BG < BG	< BG < BG < BG < BG				0.2		5.4		0.2	
2,2',3',4,4',5',6-Heptabromdiphenylether (BDE-183) 2,2',3,3',4,4',6,6'-Octabromdiphenylether (BDE-197) 2,2',3,3',4,4',5,5',6-Nonabromdiphenylether (BDE-206)	207122-16-5 117964-21-3 63387-28-0						< BG < BG < BG	< BG < BG < BG	< BG < BG < BG	< BG < BG < BG	< BG < BG < BG		:	:						0.2 µgil (Süsswasser); 1500 µg
Decabromdiphenylether (BDE-209) Hexabromcyclododecan (HBCD, Hx88) Suprano bromieta Elamper butanittel	1163-19-5 3194-55-6						< BG < BG	< BG < BG	< BG	< BG < BG	< BG < BG	-			. 14		7.8	110	14 -	(Kläranlage 0.31 µgl (Süsswasser); 150 µg (Kläranlage
Summe bromierte Flammschutzmittel Trisobutylphosphat (TiBP) Tris-butylphosphat (TiBP) Tris(2-chlorethyl)phosphat (TCEP)	126-71-6 126-73-8 115-96-8						0.032 0.022 0.109	0.584 0.047 0.017	0.005 0.018 < BG	<bg 0.020 0.016 <bg< td=""><td>0.005 < BG < BG</td><td>4</td><td></td><td>350</td><td>5.2 3.8</td><td></td><td>25</td><td>5.2</td><td>12 -</td><td>82µgf (Süsswasser 65 µgf (Süsswasser); 32 µg</td></bg<></bg 	0.005 < BG < BG	4		350	5.2 3.8		25	5.2	12 -	82µgf (Süsswasser 65 µgf (Süsswasser); 32 µg
Tris(chlorpropyl)phosphat (TCPP) Tris(dichlorpropyl)phosphat (TDCPP) Tris(dichlorpropyl)phosphat (TDCPP)	13674-84-5 13674-87-8	3.291 0.002 0.004					1.078 0.001	3.291 0.002	0.027 < BG	0.529 < BG 0.001	0.014 < BG 0.000	-					- 65		190 - 360 -	(Kläranlage 120 µgl (Süsswasser 1.1 µgl (Süsswasser); 10000: µgl (Kläranlage
Triphenylphosphat (TPhP) Tris-(2,3-Dkromproy/l-Phosphat (TDBPP / TBPP) Summa Alkylphosphate Summe Alkylphosphate ohne TCPP	126-72-7	0.000					< BG 1,243 0,165	< BG 3.945	< BG 0.051	< BG 0.566	< BG 0.018						0.13	3.8		
Phthalate und Nonylphenole Algemeines Anzahl Substanzen > BG			Weichmacher	- x - x x		teilweise untersucht				-4										
Benzylbutylphthalate Dibutylphthalate	85-68-7 84-74-2	0.1					<bg <bg< td=""><td>< BG < BG</td><td></td><td>< BG < BG < BG</td><td>< BG < BG < BG</td><td>-</td><td></td><td>- 7000 - 88</td><td>90 1500</td><td></td><td>0.24</td><td>- 16</td><td>90 -</td><td>7.5 µgl (Süsswasser); 280 µg (Kläranlage 010 µgl (Süsswasser); 220 µg (Kläranlage</td></bg<></bg 	< BG < BG		< BG < BG < BG	< BG < BG < BG	-		- 7000 - 88	90 1500		0.24	- 16	90 -	7.5 µgl (Süsswasser); 280 µg (Kläranlage 010 µgl (Süsswasser); 220 µg (Kläranlage
Diethylphfalate Dimethylphfalat Din-octylphfalat Bis(2-etry/hexyf)phtalat	84-66-2 131-11-3 117-84-0 117-81-7	0.1 0.1 0.1 0.1					< BG < BG < BG	< BG < BG < BG	< BG < BG < BG	< BG < BG < BG	< BG < BG < BG			12000 18000 700	5.6		5 1.3 1.4	5.6	40	73 µgfl (Süsswasser 201'000 µgfl (Kläranlage
Summe Phthalate Norrylphenole (Summerparameter) Thiazole, Bisphenole und Acrylamid	<u> </u>	0.05					< BG < BG	< BG 1.9	< BG < BG	<bg <bg< td=""><td>< BG < BG</td><td></td><td></td><td>1 :</td><td></td><td></td><td></td><td></td><td></td><td>0.64</td></bg<></bg 	< BG < BG			1 :						0.64
Algemeines Anzahl Substanzen > BG 2-Aminobenzothiazole	136-95-8	0.1	Korrosionsschutzmittel, Welchmacher, Farben, Aushub, Bauabfallen etc.	x x - x x		teilweise untersucht	3 < BG	5 < BG	2 < BG	0 < BG	1 < BG									
2-Amrinoberzothiazole 2-Meragobo Eurothiazole 2-Methythioberzothiazole Benzothiazol (2)H-Benzothiazolon	149-30-4 615-22-5 95-16-9 934-34-9	0.1 unterschiedlich je Probe 0.1 5 0.1					< BG	< BG	< BG	< BG < BG < BG < BG < BG	< BG				6.3		0.018	6.3	7.2	
AJAH JERTODINIZOKIN Summe Thilazole Bisphenol-A Bisphenol-A (Analysen 2014)	80-05-7 80-05-7	1			x x	weitere Untersuchungen weitere Untersuchungen	< BG	7300	9	< BG < BG < BG 140	< BG < BG < BG		-		77		5.8	-	77 1	1.6 µgli (Süsswasser); 32'0000 µgli (Kläranlage)
Bisphenol-S Bisphenol-F Summe Bisphenole	80-09-1 620-92-8	0.1			*		0.4 < BG 0.4	33 22 7355	0.5 < BG 9.5	< BG < BG < BG	0.7 < BG 0.7		-		:			-		20 pel /Sne
Acrylamid Perfluorierte Substanzen	79-06-1		Brandschutz, Industrieanwendungen,			<u> </u>	< BG	< BG	< BG	< BG	< BG		- 0:	1	-		0.011	0.05	4	20 µgl (Süsswasser); 200 µg (Kläranlage
Algemeines Anzahl Substanzen > BG PFBA (Perfluorbutansäure)	375-22-4 375-73-5		Brandschutz, Industriearwendungen, Papierhersteilung, Löschzusatz, Textilien	- x - x x		nicht untersucht	13 0.55	13 1.83	12 0.51	10 0.59 1.96 0.3	10 0.29			700						
PFBS (Perfluorbutansatifonsäure) PFPeA (Perfluorpentansäure) PFPeS (Perfluorpentansuffonsäure) PFHoX (Perfluorhexansäure)	2706-90-3	0.05					1.67 0.46 0.278 1.3	6.12 0.77 0.416 3.48	0.974 0.56 0.141 1.09	1.96 0.3 0.013 0.763	0.301 0.22 0.097 0.539			350 100 - 25	40		13		40	
PFHxS (Perfluorhexansulfonsäure) PFHpA (Perfluorheptansäure) PFHpS (Perfluorheptansulfonsäure) PFOA (Perfluoroctansäure)	307-24-4 355-46-4 375-85-9 375-92-8 335-67-1	0.1 0.01 0.01 0.01					0.278 1.3 1.15 0.368 0.046 1.06	1.72 0.563 0.071 1.5	0.677 0.531 0.033 1.38	0.05 0.138 < BG 0.276	0.628 0.192 0.023 0.865	-	- 0:	9 0.5						
PFOS (Perfluoroctansufonsäure) PFNA (Perfluorocnansäure) PFDA (Perfluoroccansäure)	1763-23-1 375-95-1 335-76-2	0.02 0.01 0.01					0.487 0.027 0.012	0.709 0.046 0.065	0.015	0.048 < BG < BG	0.483 < BG < BG	-	- 0.	0.7						25 μgll (Süsswasser); 9'050 μgl (Kläranlage)
PFDA (Perfuordecansature) Summe (PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFNA, PFBS, PFHxt PFOSI sut TEGO Summe PFAS H4PFOS (0.2-Fhortelomersufforsature, 6.2-FTS)	27619-97-2						3.42717	5.14392	3.774574	0.59409 4.138 0.03	2.430991			0.05						
Aniline und Chloraniline Algemeines	27013-37-2	0.02	Herstellung von Farben und Kunstfasern und Arzneimittel	- x x		weitere Untersuchungen	9.0	1.94	0.00	0.00	-100	1	1					!		
Anzahl Substanzen > BG Anzahl Substanzen > BG (2014) Arilin	62-53-3	0.1	PALAMETRIA				0.3	15 7 42	0 - < BG	0 0 < BG	0 1 < BG	-		. 50	13		4.6	- 13	14 -	1.5 µgll (Süsswasser); 2'000 µgll (Kläranlage)
3-Chlor-2-Methylanilin 4/5-Chlor-2-Methylanilin 2-Chloranilin	87-60-5 95-69-2 95-51-2 108-42-9 106-47-8	0.1 0.1 0.1					<bg <bg <bg <bg <bg< td=""><td>1</td><td>< BG < BG < BG < BG < BG</td><td>< BG</td><td>< BG</td><td>1</td><td></td><td>4 4 100</td><td>0.7</td><td></td><td>0.4</td><td>0.7</td><td>5.4</td><td>0.62 µgl (Süsswasser) 600 µgl (Süsswasser)</td></bg<></bg </bg </bg </bg 	1	< BG < BG < BG < BG < BG	< BG	< BG	1		4 4 100	0.7		0.4	0.7	5.4	0.62 µgl (Süsswasser) 600 µgl (Süsswasser)
3-Chioraniin 2-3-Dichforaniin 2-3-Dichforaniin 2-4-Dichforaniin 2,5-Dichforaniin	108-42-9 106-47-8 608-27-5 554-00-7 95-82-9	0.1					< BG < BG < BG	7 3 < BG	< BG < BG < BG < BG	< BG < BG < BG < BG	< BG < BG < BG < BG	1		100 100 70	0.37		0.16	0.37	7.6	1 µgf (Süsswasser)
3,4-Dichloraniin	608-31-1 95-76-1	0.1					0.1 < RG	< BG	< BG < BG	< BG	< BG	-		70 70				-		0.02 µgl (Süsswasser); 440 µgli (Kläranlage)
3,5-Dichkorardin 2-4-Dimetrylardin 2-4-Dimetrylardin 3,5-Dimetrylardin 3,5-Dimetrylardin 1,5-Dimetrylardin	626-43-7 95-68-1 87-62-7 108-69-0	0.1					< BG < BG < BG < BG	< BG 8 4 < BG	< BG < BG < BG < BG	< BG	< BG < BG < BG < BG			70 2 2	0.37		0.21	0.37	3.8	
N.N-Dinethylanilin ma Tolaidin o-Tolaidin p-Tolaidin p-Tolaidin 2,3,4-Tolehorarilin	108-69-0 121-69-7 108-44-1 95-53-4 106-49-0	0.1 0.1 0.1					<bg <bg <bg <bg< td=""><td>< BG 5 29 30</td><td>< BG < BG < BG < BG</td><td>< BG < BG < BG < BG</td><td>< BG < BG < BG < BG</td><td>-</td><td></td><td>70 20 20 10</td><td>2.5 4.7 2.5</td><td></td><td>2</td><td>4.7 2.5</td><td>3.5</td><td>0.1 µgl (Süsswasser) 0.252 µgl (Süsswasser) 0.12 µgl (Süsswasser)</td></bg<></bg </bg </bg 	< BG 5 29 30	< BG < BG < BG < BG	< BG < BG < BG < BG	< BG < BG < BG < BG	-		70 20 20 10	2.5 4.7 2.5		2	4.7 2.5	3.5	0.1 µgl (Süsswasser) 0.252 µgl (Süsswasser) 0.12 µgl (Süsswasser)
2,3.4 Trehtorardin 2,4.5 Trichtorardin 2,4.6 Trichtorardin 3,4.5 Trichtorardin 3,4.5 Trichtorardin	634-67-3 636-30-6 634-93-5 634-91-3 88-05-1	0.1 0.1 0.1					<bg <bg <bg <bg <bg 0.4</bg </bg </bg </bg </bg 	< BG < BG < BG < BG	< BG < BG < BG	< BG < BG < BG < BG	< BG < BG < BG			10 10 10	0.04		0.36		0.04	10 1
2.4,6-Trimethylaniin Summe Aniline und Chloraniiine Phenole und Chlorphenole	88-05-1	0.1					< BG 0.4	5 208	< BG < BG	< BG < BG	< BG < BG	-		0.9				-		-
Algemeines Anzahl Substanzen > BG Phenol	108-95-2	0.1	Herstellung von Kunststoffen, Arzneimittel	- x x		weitere Untersuchungen	1 < BG	8	1 0.2	1 < BG	0 < BG	-		10000	580		- 330		580 -	7.7 µgli (Süsswasser); 2'100 µgli
P-Chlorphenol Pentachlorphenol - (Chlor-3-methylphenol - 2,4-/2,5-Dichlorphenol	95-57-8 87-86-5 59-50-7	0.1					<bg 0.2 <bg< td=""><td>75 < BG 4</td><td>< BG < BG < BG</td><td>< BG 0.1 < BG</td><td>< BG < BG < BG</td><td></td><td></td><td>200</td><td>9.1 0.041 140</td><td>1</td><td>8.9 0.057 1.4 170</td><td>0.041</td><td>9.1 - 2.3 10 140 -</td><td>(Kitranlage) 6µgf (Süsswasser) 0.1 µgf (Süsswasser)</td></bg<></bg 	75 < BG 4	< BG < BG < BG	< BG 0.1 < BG	< BG < BG < BG			200	9.1 0.041 140	1	8.9 0.057 1.4 170	0.041	9.1 - 2.3 10 140 -	(Kitranlage) 6µgf (Süsswasser) 0.1 µgf (Süsswasser)
A-Principhylanol	105-67-9 95-48-7 108-39-4 106-44-5	0.1 0.1 0.1					0.2 < BG < BG < BG < BG < BG < BG < BG	5 41 15	< BG < BG < BG	< BG < BG < BG	< BG < BG < BG			2000	36 93 93		42 75 74		36 - 93 - 93 -	2.2 (Süsswasser) 12 µgl; 3'300 µgl (Kitranlage) 100 µgl (Süsswasser) 100 µgl (Süsswasser)
A.6. Trichlorphenol Summe Phenole und Chlorphenole Chlorbenzole	88-06-2	0.1					< BG 0.2	< BG 246	< BG 0.2	< BG 0.1	< BG < BG	-			1.2		1.2	4.1	1.2	4.1 µg1 (Süsswasser)
Algemeines Anzahl Substanzen > BG			Lösungsmittel, Herstellung von Insektiziden, Farbstoffen, Arzneimitteln	. x x		weitere Untersuchungen	0	2	0	0	0									
Chlorbenzol	108-90-7 95-50-1 541-73-1 106-46-7	0.05					< BG	< BG	< BG	<pre></pre>	< BG	-		3000 3000 10	7.8 30 -	100 600	5 46 72	0.48	7.8 100 30 100 - 100 57 100	
,2,3-Trichlorbenzol ,2,4-Trichlorbenzol ,3,5-Trichlorbenzol	87-61-6 120-82-1 108-70-3	0.05 0.05 0.05					< BG < BG < BG < BG	< BG < BG < BG	< BG < BG < BG	< BG < BG < BG	< BG < BG < BG		:	270 400 270	0.7 0.4	70	2.1	1.2	0.7 0.4 100	4 µgf (Süsswasser) 4 µgf (Süsswasser) 4 µgf (Süsswasser) 4 µgf (Süsswasser)
Summe Chlorbenzole Nitroverbindungen Nitgemeines Anzahl Substanzen > BG				- x x		weitere Untersuchungen														
Nitroberzol	98-95-3 88-75-5						< BG	< BG	< BG	0 < BG < BG	< BG	-		10	0.14		0.092	0.14	1.3	38 µgli (Süsswasser); 92 µgli (Kläranlage)
-Nitrophenol -Nitrophenol -Nitrophenol -A-Dintrophenol -4-Dintrophenol	100-02-7 100-02-7 121-14-2						< BG	< BG	< BG	< BG < BG < BG < BG	< BG	-		2000 50 0.5	0.24		4.4	0.24	3.9	2 µgl (Süsswasser); 550 µgl (Kläranlage)
2,6-Dintrototuol Summe Nitroverbindungen Flüchtige organische Verbindungen (VOC)	606-20-2	0.1					< BG 0.1	< BG 50	< BG 0.2	< BG < BG	< BG < BG	-		0.5	0.049		0.067	0.049	0.57	
Algemeines Anzahl Substanzen > BG Dichlordfluormethan (Freon 12)	75-71-8 74-87-3			- x x		weitere Untersuchungen	1 <bg <bg< td=""><td>5 < BG < BG</td><td>2 < BG < BG</td><td>0 < BG < BG</td><td>1 < BG < BG</td><td></td><td></td><td>7000</td><td>20</td><td></td><td>30 4.9</td><td></td><td>20 -</td><td></td></bg<></bg 	5 < BG < BG	2 < BG < BG	0 < BG < BG	1 < BG < BG			7000	20		30 4.9		20 -	
Vinylchlorid Brommethan Chlorethan Frichlorfluormethan (Freon 11)	75-01-4 75-01-4 74-83-9 75-00-3 75-69-4 75-35-4 75-09-2 156-60-5	0.05 0.5 0.05					1	< BG < BG < BG < BG	< BG < BG < BG	< BG < BG < BG < BG	< BG < BG < BG < BG	4	- 0.1	900	0.019 0.75 2100 520		2 0.0065 0.69 - 0.19 - 590 - 330	0.019	4.4 1 0.75 - 2100 - 520 -	
Frichlorfluormethan (Freon 11) 1,1-Dichlorethen (Cichlormethan (Methylenchlorid) rans-1,2-Dichlorethen 1,1-Dichlorethan	75-35-4 75-09-2 156-60-5 75-34-3	0.05 0.05 0.05 0.05 0.05					< BG < BG 0.13 < BG 0.13 < BG < BG < BG < BG < BG < BG	< BG < BG < BG < BG	< BG 44.1 < BG < BG	< BG < BG < BG < BG	< BG 0.3 < BG < BG		- 21	30 20 50 3000	28 11 36 2.8	100	7 10 2.5 5 2.7 1.3 0 11 3 - 0.78	11 - 2.8	28 100 11 100 36 - 380 100	
1,1-Dichlorethan 2,2-Dichlorpropan 3,2-Dichlorpropan 5,6-1,2-Oichlorethen Frichlormethan (Chloroform)	75-34-3 594-20-7 156-59-2 67-66-3	0.05					< BG	< BG	< BG	< BG	< BG			50	3.6 0.22	70	0 1.1 21 0 0.061 22	0.22	3.6 - 9.7 100	
Bromchlormethan 1,1,1-Trichlorethan 1,1-Dichlorpropen	74-97-5 71-55-6 563-58-6 56-23-5	0.05					< BG < BG < BG	< BG < BG < BG	0.16 < BG < BG	< BG	< BG < BG < BG			2000	8.3 800 - 0.46	200	2.1 0 280 70 5 0.18 1.5	0.46	8.3 - 800 100 - 4.9 20	26 µgl (Süsswasser 2.5 µgl (Süsswasser
étrachierkohlenstoff ,2-Dichlorethan fenzol	107-06-2 71-43-2	0.05					< BG	3.8	< BG	< BG	< BG	-		3 3	0.17 0.46		5 0.048 1.4 5 0.23 2.6	0.17	1.3	1'060 µg/l (Süsswasser)
frichlorethen (Tri) ,2-Dichlorpropan fromdichlormethan	79-01-6 78-87-5 75-27-4 74-95-3						< BG < BG < BG	< BG < BG < BG	< BG < BG < BG	< BG	< BG < BG < BG	-	- 1	5	0.28 0.82 0.13 0.83	5 80	5 0.1 1.8 5 0.27 1.7 0 0.037 22 - 0.21	0.85	0.28 100 0.82 50 38 - 0.83 5	(Klåranlage) 410 µgl (Süsswasser)
(romdichlormethan) Ubrammethan iss-1,3-Dichlorpropen (oluci	10061-01-5 108-88-3 10061-02-6	0.05					< BG	6.4	< BG	< BG	< BG	1		7000	110			-	110	74 µg/l (Süsswasser); 8'400 µg/l (Kläranlage)
nans-1,3-Dichlorpropen 1,12-Trichlorethan 3-Dichlorpropan fetrachbrethen (Per)	79-00-5 142-28-9 127-18-4 124-48-1 106-93-4	0.05					< BG < BG < BG	< BG < BG < BG	< BG < BG < BG < BG	< BG < BG < BG < BG	< BG < BG < BG < BG	1	- 1	140	0.041 37 4.1		5 0.014 1.6 0.013 5 0.0018 0.0023	11	0.041 37 4.1 100	300 µgf (Süsswasser)
ittromchlormethan ,2-Dibromethan ,1,1,2-Tetrachlorethan !thylbenzol	124-48-1 106-93-4 630-20-6 100-41-4	0.05					< BG	< BG < BG < BG	< BG < BG < BG	< BG < BG < BG < BG	< BG < BG < BG < BG			0.05	4.1 0.87 0.0075 0.57	80 0.05 700	0.23 2 0.0021 0.014 0.22	0.57	38 - 1.7 - 48 -	100 µg/l (Süsswasser); 9/600 µg/l
- Xylol/ p-Xylol Xylol	95-47-6 100-42-5	0.05 0.05					< BG	1	< BG < BG < BG < BG	< BG < BG < BG < BG	< BG < BG < BG < BG	-		10000 10000 10000 7000	1.5 19 120	700	1.7 790 - 19 0 130 110	1.0	19 - 120 -	(Kläranlage) 1.3 µgli (Süsswasser) 40 µgli (Süsswasser); 5'000 µgl
ityrol sopropylbenzol tromoform ,1,2,2-Tetrachlorethan	98-82-8 75-25-2	0.05 0.05					< BG	< BG	< BG	< BG	< BG			7000 3500	45 3.3		74	3.3 0.076	45 - 38 -	(Kitraniage) 22 µg1 (Süsswasser) 140 µg1 (Süsswasser)
opropybenzol romoform 1,2.3 - Terischiorethan 2,3.4 Trickhorpropan Propybenzol rombenzol 3.5 - Trinethybenzol	79-34-5 96-18-4 103-65-1 108-86-1 108-67-8	0.05 0.05 0.05 0.05 0.05					< BG < BG < BG < pc	< BG < BG < BG < RG	< BG < BG < BG < BG	< BG	< BG < BG < BG < R/2			3500	0.076 0.00075 66 6.2		0.03 0.18 0.12 4.2 8.7		36 10 0.53 - 66 - 6.2 -	
3,5-TrimePybenzol Chistribol Chistribol Historia Historia Historia Historia Jak TrimePybenzol Jak TrimePybenzol	108-67-8 95-49-8 106-43-4 98-06-6 95-63-6	0.05 0.05 0.05 0.05					< BG	< BG	C BG	C BG	C BG	-		350 700 - 3500 350	24 25 69		23 24 160		24 25 69	8 µgl (Süsswasser 32 µgl (Süsswasser
ec-Butylberizol -Isopropyltoluol	95-63-6 135-98-8 99-87-6 104-51-8 96-12-8	0.05					< BG < BG < BG	< BG < BG < BG	< BG < BG < BG	<bg <bg <bg <bg <bg< td=""><td>< BG < BG < BG</td><td></td><td></td><td>350 3500 3500 1800</td><td>5.6 200 - 100 0.00033</td><td></td><td>8.1 590 320 0.00014 0.08</td><td>0.00033</td><td>5.6 200 - 100 0.037</td><td></td></bg<></bg </bg </bg </bg 	< BG < BG < BG			350 3500 3500 1800	5.6 200 - 100 0.00033		8.1 590 320 0.00014 0.08	0.00033	5.6 200 - 100 0.037	
-Batylterizel 2-Otheren 3-otherpropan lexachtorbutaden Japhthalin	91-20-3	0.05 - 5					< BG	3.6	< BG	< BG	< BG			1000	0.00033	0.2	0.00014 0.086	0.12	0.61 -	2 μg/l (Süsswasser); 29'000 μg/ (Kläranlage)
reon 113 ITBE (Methyltertiärbutylether) ITBE (Ethyltertäirbutylether)	76-13-1 1634-04-4 637-92-3	0.05					< BG	< BG	< BG	< BG < BG < BG	< BG			200 42000	1000		3.2	14	630 -	2'600 µgl (Süssawasser); 71'000 µgl (Kläranlage)
inc. (Laryler watcoaysockr) sight. NW (CS-CO) (ppt.) summe DTEX summe NTBE+CTBE summe Trihalomethane (THM) summe HalperNW (C1-C3		10								< BG < BG 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			51	2000						
umme HalogenKW C1-C3 umme HalogenKW C1-C3 (ohne Methylenchlorid) otal über alles: Anzahl Substanzen > BG									0.16	0 0	0		11	:						
krzneimittel, Pestizide, Süssstoffe und Korrosionsschutzmittel (krzahl Substanzen > BG							26	34	16	11	9									
Total über alles inkl. GS-Labor: Anzahl Substanzen > BG							51	88	25	24	22									

Anhang 2 - Typ E Übersichtstabelle mit Resultaten und Grenzwerten Kanton Zürich, Deponiemonitoring - Pilotstudie Emerging Pollutants

	Kanton Zürich, Deponiemonitoring - Alle Konzentrationen sind in [μg/l] ar			Pollutants		No.		T 5	x-5			T 5	T- 5	X-5	X 5	Page 5	T 5						0			
					Stoffgruppe auf folgenden Deponietypen zu erwarten	Bisherige Untersuchungen Expertenrunde im Spezial-Deponie-	E01			E04 B			E08	E09	E10		E12	Grenzwerte CH - GSchV	Grenzwerte CH - TBDV	Grenzwerte CH - AltiV		(EPA Regional Scr Maximum contaminant levels for drinking water	Protection of Grou	n: Zusatzinformati ind Target Risks Tapwa	St. Eir ster; µg/l Si au	indortspez. leitbed. Für PNEC kerwässer (Predicted No s Deponien, Effect öchstwert Concentration)
	Substanz	CAS	Bestimmungs- grenze (BG)	Vorkommen / Herkunft (pro Stoffgruppe)		2013+2016 monitoring Kt ZH	naciao ge	Naciality .	Nacial organization	reasonge Marcin	ALLES OF	Naciaorge	III DAUND	racisorge .	III DELINED	III DELINED	Eir	nleitung Anforderung		Anhung 1 a gar			Levels (SSLs); pg/	kg)	Si	ckerwasser
	obersihmedatum				Typ A Typ B Typ C Typ D Typ E		44434	44435	44438	44432 444	145 44441	44445	46447	44440	44434	44438	ab	dustrie- Wasserqualitä wasser (Anhang 2 GSch	Arhang 2 V)	Liste BAFU 2021	Tapwater	MCL	*SSL SS	SL Target SL Child Risk = 1E-06 (THI = target	d THI = 0.1 A et hazard index)	WEL 2013 https://substances.ineli
	imperatur (°C) strianigkeit (µS/om) +Wert						15.5 1330 7.16 6.3 64	13 1970 7.15 5.8 55	24.1 10800 8 7 84	13.4 15 2840 10 7.56 7. 6.2 7 50 7	i.4 13.5 60 776 82 7.13 2 1 2 10	14.7 1730 7.27 6 59	21.8 6200 8.08 8	18.9 5510 7.38 7.1 77	20.4 7640 7.44 3.2 36	22.9 6670 7.18 3.9 46	15.2 4090 9.3 8.1 81									
Column C	romerte und Organophsphor-Flammschutzmittel		- 1	Gebrauchsgegenstände, Bauatfälle	- x - x x																					
Column C	mahrombishenul (HeBB) brombiphenyl (TrBB) strabrombiphenyl (TeBB)	36355-01-8 51202-79-0 40088-45-7 35194-78-6					< BG < BG < BG < BG	< BG < BG < BG < BG	< BG < BG < BG	< BG < 1 < BG < 1 < BG < 1 < BG < 1	3G < BG 3G < BG 3G < BG 3G < BG	< BG < BG < BG < BG	< BG < BG < BG < BG	< BG < BG < BG	< BG < BG < BG < BG	< BG < BG < BG	< BG < BG < BG				0.0026			- 0.0026	0.014	
Column C	anghromhinhand (NoBR)	27858-07-7 27753-52-2 13654-09-6 41318-75-6 5436-43-1					< BG < BG < BG < BG	< BG < BG < BG < BG	< BG < BG < BG < BG	< BG < 1 < BG < 1 < BG < 1 < BG < 1	9G	< BG < BG < BG < BG	< BG < BG < BG < BG	< BG < BG < BG < BG	< BG < BG < BG < BG	< BG < BG < BG < BG	< BG < BG < BG < BG						54		0.2	
Column C							< BG < BG < BG < BG	< BG < BG < BG < BG	< BG < BG < BG < BG	< BG < I < BG < I < BG < I	9G < BG 9G < BG 8G < BG 8G < BG	< BG < BG < BG < BG	< BG < BG < BG < BG	< BG < BG < BG < BG	< BG < BG < BG < BG	< BG < BG < BG < BG	< BG < BG < BG < BG									
Column	2'3.5'.4.4' B.G-Detaberomdishenvisher (BDE-197) 2'3.3',4.4' 5.5' 6-Nonabromdishenvisther (BDE-206) acabromdishenvisther (BDE-209)	117964-21-3 63387-28-0 1163-19-5					< BG < BG	< BG < BG < BG	< BG < BG < BG	<bg <1<br=""><bg <1<="" td=""><td>3G < BG 3G < BG 3G < BG</td><td>< BG < BG < BG</td><td></td><td></td><td></td><td>14</td><td></td><td>7.8</td><td>- 110</td><td>14</td><td></td></bg></bg>	3G < BG 3G < BG 3G < BG	< BG < BG < BG	< BG < BG < BG	< BG < BG < BG	< BG < BG < BG	< BG < BG < BG	< BG < BG < BG				14		7.8	- 110	14	
	umme bromierte Flammschutzmittel	-					< BG < BG 0.245 0.108	< BG < BG 0.093 0.048	< BG < BG 0.012 0.002	< BG < I < BG < I 0.200 0.0 0.134 0.0	BG < BG BG < BG 012 0.112									950	. 52				12	
The content of the	is(2-chlorethyl)phosphat (TCEP) is(chlorpropyl)phosphat (TCPP)	115-96-8 13674-84-5	0.110				0.027	0.033	0.002	0.110 0.0 0.838 0.0	0.016 0.068	0.076	0.094	0.021	0.097	0.027	0.043	-		- 18	3.8		- 3.8 - 65	- 3.8	14 190	(Klà 120 µg/l (Süss 1.1 µg/l (Süsswasser);
THE	iphenylphosphat (TPhP) is-(2,3-Dibrompropyl)-Phosphat (TDBPP / TBPP)						0.001 < BG 0.461	0.001 < BG 0.451	0.000 < BG 0.232	0.003 0.0 <bg <1<br="">1.304 0.1</bg>	ISS 0.003 ISS < BG ISS < BG ISS 0.336	0.003 < BG 1.720	0.002 0.001 < BG 0.483	0.000 < BG 0.066	0.000 < BG 0.610	0.008 < BG 1.364	0.006 < BG 0.267				-		- 0.13	- 3.8	360	ual (Kili
Series	nthalate und Nonylphenole		1	Heldmadter	- x - x x	tellweise untersucht												-1	-	1			1 1		-	-
The column 1	anzyfloutylptthalate butylptthalate	84-74-2	0.1				< BG	< BG	< BG	< BG < 1	3G < 8G	< BG	< BG	< BG	< BG	< BG	< BG	-	-	- 7000 - 88	16 90		- 0.23	- 16	170 90	7.5 µg/l (Süsswasser); (Klä 010 µg/l (Süsswasser); 2 (Klä
Second		131-11-3 117-84-0	0.1 0.1				< BG < BG < BG 0.5	< BG < BG < BG 0.2	< BG < BG < BG 0.4	< BG 0 < BG <1 < BG <1 0.1 0	2 < BG BG < BG BG < BG 6 < BG	< BG < BG < BG < BG	< BG < BG < BG < BG	< BG < BG < BG	< BG < BG < BG < BG	< BG < BG < BG	0.1 < BG < BG < BG	-		- 12000 - 18000 - 700	1500		6 1.3	1.4 5.8	1500	73 µg/l (80ss
The content of the	onvlohenole (Summenparameter)						0.5 0.61	0.2	0.4 < BG	0.1 0 < BG 0	8 < BG 1 18.7	< BG 0.9	< BG < BG	< BG < BG	< BG 0.37	< BG 0.42	0.1		+	1 :						-
The column The	nzahl Substanzen > BG	136-95-8		Korrosonischutzmittel, Weichmacher, Farber, Aushub, Bauabfällen etc.	x x - x x	tellweise untersucht	4 < BG	1 < BG	2 < BG	2 1 < BG <1) 2 9G < BG	3 < BG	2 < BG	1 < BG	3 < BG	4 < BG	3 < BG	-								
The column	Methythioberzothiazole ergothiazol	95-16-9	0.1 5 0.1				0.1 < BG 2.3 2.4	< BG < BG 0.2 0.2	0.3 < BG 0.7	3.9 <1 < BG <1 < BG <1 3.9 <1	-	0.3 < BG < BG 0.3	- BG 0.1 < BG 1	< BG < BG < BG 0.1	1.4 < BG 0.7 2.1	0.3 < BG 1.5 1.8	0.3 < BG 0.2 1.5				6.3			0.3	1.2	
THE COLUMN TO TH	sphenol-A	80-05-7 80-09-1	0.1			x weitere Untersuchungen x weitere Untersuchungen	4	< BG	< BG	< BG < I	3G 3	1	< BG	< BG	2	2	< BG	-			π		- 5.8		77	1.6 µg/l (Süsswasser); µg/l (Klä
Series Se	sphanol-F umme Bischenole zrylamid	620-92-8	1				< BG 4.4 < BG	< BG < BG < BG	< BG < BG < BG	< BG < I	SEG SEG	< BG 1.2 < BG	< BG < BG < BG	< BG < BG < BG	< BG 2 < BG	< BG 3 < BG	< BG < BG			1	-		- 0.011	- 0.05	4	20 µg/l (Süsswasser); (Kia
Second				Brandschutz, Industrieanwendungen, Papierherstellung, Löschzusatz, Textilien	- x - x x	nicht untersucht	5	7	11	, ,		7	41	11	10	12	7									
Second	PNA (Perfluorpentansiture) FPeS (Perfluorpentansulforsiture)	375-22-4 375-73-5 2706-90-3 2706-91-4	0.05 0.01 0.05 0.01				< BG < BG < BG < BG	< BG 0.025 < BG 0.017	0.07 0.167 0.09 0.033	0.09 <1 0.058 <1 < BG <1 0.015 0	9G < BG 9G 0.088 9G < BG 01 0.11	< BG 0.02 < BG 0.012	0.33 1.27 0.39 0.04	0.11 0.279 0.23 0.227	0.25 0.59 0.5 0.42	0.42 0.732 0.65 0.104	< BG 0.041 < BG < BG	-		- 700 - 350 - 100	40		13		40	
Series (1988) 1988 1989	HvA (Perfluorhexansiture) HvS (Perfluorhexansulforsiture) HpA (Perfluorheptansiture)	307-24-4 355-46-4 375-85-9 375-92-8	0.01 0.1 0.01 0.01				0.022 0.032 0.013 < BG	0.028 0.092 0.016 < BG	0.155 0.262 0.08 0.016	0.105 0.0 0.133 0.1 0.065 <1 0.014 <1	0.167 165 1.35 9G 0.04 9G 0.114	0.02 0.039 0.01 < BG	0.513 0.219 0.183 0.019	0.499 1.03 0.203 0.06	0.914 2.37 0.306 0.14	0.713 0.578 0.448 0.04	0.053 0.039 0.031 < BG			25 3 0.7 9						
The column The	FOS (Perfluoroctansulfonsäure)	1763-23-1	0.02				0.093	0.18	0.396	0.431 0.1	156 3.28	0.108	0.559	0.787	1.51	0.986	0.255		- 0	3 0.7	-					25 µg/l (Süsswasser); 9' (Kla
Series	imme (PEBA, PFPeA, PFHxA, PFHpA, PFOA, PFNA, PFBS, FHxS, PFOS) µg TEQ/I imme (PFAS IFPOS (62-Fluorietomersulfonsiure, 62-FTS)						0.28242	0.489505	1.625917 1	.253406 0.42	935 7.576758	0.32962	2.0488	3.041269	6.77523	3.943162 0.	693971			0.06						
Series	niline und Chloraniline			Herstellung von Farben und Kurstfasern und farmelmittel	- x x	weitere Untersuchungen													*							
Column	nzahi Substanzen > BG nzahi Substanzen > BG (2014) niin	62-53-3	0.1							0 03 <1	8 · Ø	1 1 < BG		0 - < BG				-		- 50	13		- 4.6	- 13	14	1.5 µgli (Süsswasser); 2' (Kla
The content of the	Chlorantin	87-60-5 95-69-2 95-51-2 108-42-9	0.1 0.1 0.1 0.1				< BG < BG < BG	< BG < BG < BG < BG	< BG < BG < BG < BG	< BG < 1 < BG < 1 < BG < 1 < BG < 1	3G < BG 3G 0.2 3G < BG 3G 0.2	< BG < BG 0.1 < BG	< BG 2 0.8 0.3	< BG < BG < BG < BG	< BG < BG < BG < BG	< BG < BG 0.1 < BG	< BG < BG < BG < BG	-		- 4 - 4 - 100 - 100	0.7		0.4	0.7	5.4	- 0.62 удл (Süsa - 600 удл (Süsa
The content of the	3-Dichloraniin 4-Dichloraniin 5-Dichloraniin	106-47-8 608-27-5 554-00-7	0.1 0.1 0.1				< BG < BG < BG < BG	< BG < BG < BG < BG	< BG < BG < BG	< BG <1 < BG <1 < BG <1	9G < BG 9G < BG 9G < BG 9G 0.1	< BG < BG < BG < BG	< BG < BG < BG 0.7	< BG < BG < BG	< BG < BG < BG < BG	< BG < BG < BG	< BG < BG < BG	-		- 100 - 70 - 70	0.37		0.16	- 0.37	7.6	- 1 µg/l (Süssi
Column	4-Dichloranilin	95-76-1	0.1																	- 70 - 70	. 0.97		0.21	0.37	3.8	0.02 µg1 (Sisswasser); (Klā
Column	s-Dimethylanian 5-Dimethylanian	87-62-7 108-69-0 121-69-7 108-44-1	0.1 0.1 0.1 0.1 0.1				< BG < BG < BG	< BG < BG < BG < BG	< BG < BG < BG < BG	< BG < 1 < BG < 1 < BG < 1 < BG < 1	3G < BG 3G < BG 3G < BG 3G < BG	< BG < BG < BG < BG	03 < BG < BG	< BG < BG < BG < BG	< BG < BG < BG	< BG < BG < BG < BG	< BG < BG < BG < BG			2 2 2	2.5		0.9	2.5	3.5	0.1 up/l (Siss
The color The	Tobidin Tobidin 3.4-Trichtoraniin 4.5-Trichtoraniin	636-30-6	0.1				< 90	< 90	2 BO	< 90 < 1	0.3	2.00	2 BC	Z 90	Z 90	< 90	2 BC			- 20 - 10 - 10 - 10	4.7 2.5		1.1	4.7	7.7	0.252 µg/l (Süss 0.12 µg/l (Süss
The column The	4.5-Trichloraniin 4,6-Trimethylaniin umme Aniline und Chloraniine	634-91-3 88-05-1	0.1 0.1				< BG < BG 0.3	< BG < BG < BG	< BG < BG < BG	< BG <1 < BG <1 0.3 <1	9G < BG 9G < BG 9G < 4A	< BG < BG 0.1	< BG < BG 4.7	< BG < BG < BG	< BG < BG 0.2	< BG < BG 0.2	< BG < BG 0.2			10 10 0.9			0.30	1 21	0.04	
Second		108.95.2	0.1	Herstellung von Kunststoffen, Arzneimittel	- x x	weitere Urtersuchungen	6 < BG	6 < BG	6 < BG	1 :	5 5	6 ×8G	0 < BG	6 < BG	1 < BG	2 0.2	4 24			10000	580		. 330		580	7.7 µg/l (Staswasser); 2
Second S	Chlorphanol Intachlorphanol Chlor3-methylphanol 2,4/2,5 Dishlorphanol	95-57-8 87-88-5 59-50-7	0.1 0.1 0.1															-		- 200	9.1 0.041 140		- 8.9 1 0.057 - 170	1.4 0.041	9.1 2.3 140	- 6µg/l (Süssi 10 0.1 µg/l (Süssi -
Series Se		105-67-9 95-48-7 108-39-4 106-44-5	0.1 0.1 0.1 0.1				< BG	< BG < BG < BG < BG	< BG < BG < BG < BG	<bg <1<br="">0.4 <1 <bg <1<br=""><bg 1<="" td=""><td>9G 2.6 9G 3.5 9G 4.3 1 6.3</td><td>< BG < BG < BG < BG</td><td>< BG < BG < BG < BG</td><td>< BG < BG < BG < BG</td><td>< BG 0.1 < BG < BG</td><td>< BG < BG < BG 1.9</td><td>< BG 0.2 1.1 11.2</td><td></td><td></td><td>- 2000 - 2000 - 200</td><td>36 93 93 190</td><td></td><td>- 42 - 75 - 74 - 150</td><td></td><td>36 93 93 190</td><td>2.2 (Süse - 12 unit 3'300 unit (Klie - 100 µgit (Süse - 100 µgit (Süse</td></bg></bg></bg>	9G 2.6 9G 3.5 9G 4.3 1 6.3	< BG < BG < BG < BG	< BG < BG < BG < BG	< BG < BG < BG < BG	< BG 0.1 < BG < BG	< BG < BG < BG 1.9	< BG 0.2 1.1 11.2			- 2000 - 2000 - 200	36 93 93 190		- 42 - 75 - 74 - 150		36 93 93 190	2.2 (Süse - 12 unit 3'300 unit (Klie - 100 µgit (Süse - 100 µgit (Süse
Second S	4.6-Trichterphenol umme Phenola und Chlorphenole Norbenzole	88-06-2	-				< BG < BG	< BG < BG	< BG < BG	< BG < 1 0.4 1	3G < BG 2 56.8	< BG < BG	< BG < BG	< BG < BG	< BG 0.1	< BG 2.1	< BG 14.9			:	1.2		- 12	- 4.1	1.2	- 4.1 upil (Süss
Mary	,	108-90-7		Farhstoffen Arzneimitteln			0 < BG	0 < BG	6 < BG	6 < BG <	0 0 BG < BG	1 < BG	6 < BG	0 < BG	0 < BG	0 < BG	0 < BG	-		- 700	7.8	10	0 5.3	68 -	7.8	100 2700 µg/l (Süss
The column The	4-Dichlorbenzol	106-46-7	0.05				< BG	< BG	< BG	< BG < I	3G < BG	0.06	< BG	< BG	< BG	< BG	< BG			- 3000 - 10	0.48	7	5 46 - 2.1	72 0.48	57 0.7	100 6 pg/l (Süsswasser), 8' 100 20 pg/l (Süsswasser), 8' (Kla 100 4 pg/l (Süss 100 4 pg/l (Süss
THE	2,4-Trichforbenzol 3,5-Trichforbenzol umme Chlorbenzole	120-82-1 108-70-3	0.05 0.05				< BG < BG < BG	< BG < BG < BG	< BG < BG < BG	< BG <1 < BG <1 < BG <1	3G < BG 3G < BG 8G < BG	< BG < BG 0.06	< BG < BG < BG	< BG < BG	< BG < BG < BG	< BG < BG < BG	< BG < BG < BG	-		- 400 - 270	0.4	7	0 1.2	200 1.2	0.4	100 4 μg/l (Süss - 4 μg/l (Süss
Seed of the field	troverbindungen jogeneines szahl Substanzen > BG troberzol				- x x	weitere Untersuchungen	0 < BG	0 < BG	0 < BG	0	0 BG < BG	0 < BG	0 < BG	0 < BG	0 < BG	0 < BG	1 < BG	1	1	- 10	0.14		- 0.092	- 0.14	1.3	. 38 µg/l (Süsswasser) (Kla
Second S	Nitrophenol Nitrophenol 4-Dinitrophenol	88-75-5 100-02-7 100-02-7	0.1 0.1 5				< BG < BG < BG	< BG < BG < BG	< BG < BG < BG	< BG < I < BG < I < BG < I	3G < BG 3G < BG 3G < BG	< BG < BG < BG	< BG < BG < BG	< BG < BG < BG	< BG < BG < BG	< BG < BG < BG	< BG 0.2 < BG	-		2000	-		4.4		3.9	2 µgl (Süsswasser);
Second Content of the content of t	6-Dintrotoluol umme Nitroverbindungen	606-20-2	0.1				< BG < BG	< BG < BG	< BG < BG	< BG < I	9G < 8G 8G < 8G	< BG < BG	< 8G < 8G	< BG < BG	< BG < BG	< BG < BG	< BG 0.2		1	0.5					0.57	(Kila
Section 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	üchtige organische Verbindungen (VOC) igenneines szahl Substanzen > BO schordhurmethen (Freen 12) igensethan	75-71-8 74-97 A	0.05 unterschiedlich in Deuben		- x x	weitere Untersuchungen	6 < BG < BG	1 < BG < BC	1 < BG < BG	3 < BG < 1 < BG	1 15 9G < BG 9G < PO	5 0.06 < RG	1 < BG < BG	3 < BG < BG	2 < BG < BG	8 < BG < BG	3 < BG < BG			7000	20		30		20	
Section 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	nylchlorid commethes nicerthan sicrethan sicrethan	75-01-4 74-83-9 75-00-3 75-69-4	0.05 0.5 0.05 0.05				< BG	< BG < BG < BG < BG	< BG < BG < BG < BG	< BG <1 <bg <1="" <<="" <bg="" td=""><td>- 3G 9G</td><td>< BG < BG < BG 0.06</td><td>< BG < BG < BG < BG</td><td>< BG < BG < BG 2.42</td><td>< BG < BG < BG</td><td>< BG < BG < BG</td><td>< BG < BG < BG 0.05</td><td>-</td><td></td><td>5 0.5 - 900 - 10000</td><td>0.019 0.75 2100 520</td><td></td><td>2 0.0065 - 0.19 - 590 - 330</td><td>0.69 0.019</td><td>4.4 0.75 2100 520</td><td>1</td></bg>	- 3G 9G	< BG < BG < BG 0.06	< BG < BG < BG < BG	< BG < BG < BG 2.42	< BG < BG < BG	< BG < BG < BG	< BG < BG < BG 0.05	-		5 0.5 - 900 - 10000	0.019 0.75 2100 520		2 0.0065 - 0.19 - 590 - 330	0.69 0.019	4.4 0.75 2100 520	1
The second control of the control of	1-Dichlorethen chlormethan (Methylenchlorid) nar-1,2-Dichlorethen 1-Dichlorethen	75-35-4 75-09-2 156-60-5 75-34-3	0.05 0.05 0.05 0.05				< BG 30.4 < BG 0.05	< BG < BG < BG < BG	< BG 0.28 < BG < BG	< BG < 1 < BG < 1 < BG < 1 0.05 < 1	3G < BG 3G < BG 3G < BG 3G 0.8	< BG 2.61 < BG < BG	< BG 8220 < BG < BG	< BG < BG < BG	< BG < BG < BG < BG	< BG 0.7 < BG 0.06	< BG < BG < BG	-		- 30 0 20 - 50 - 3000	28 11 36 2.8	10	7 10 5 2.7 0 11 - 0.78	2.5 . 1.3 11 31 . 2.8	28 11 36 380	100 78.8 upil (Süss 100 1950 ppil (Süss 100 92 upil (Süss
See 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	ichlormethan (Chloroform)	67-66-3	0.05				0.14 < BG	< BG < BG < BG	< BG < BG < BG	< BG < 1 < BG < 1 < BG < 1	9G	< BG < BG < BG	< BG < BG < BG	< BG < BG 0.05	< BG < BG < BG	0.13 0.11	< BG < BG < BG			- 50			0 1.1 0 0.061	21 0.22	3.6 9.7	100 146 µgil (Süsswasser)
See 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	1,1-Trichforethan 1-Dichforpropen trachforkeffensteff 2-Dichforethan	71-55-6 563-58-6 56-23-5 107-06-2	0.05 0.05 0.05 0.05				< BG < BG < BG < BG	< BG < BG < BG 0.13	< BG < BG < BG < BG	< BG < I < BG < I < BG < I < BG < I	9G < BG 9G < BG 9G < BG 9G < BG	< BG < BG < BG < BG	< BG < BG < BG < BG	< BG < BG < BG < BG	< BG < BG < BG < BG	< BG < BG < BG 0.09	< BG < BG < BG < BG			2000 2 2 2 2 3 3	800	20	0 280 5 0.18 5 0.048	70 1.9 0.46 1.4 0.17	800 4.9 1.3	100 26 µg/l (Süss 20 2.5 µg/l (Süss 1060 µg/l (Süss
	enzel lichtorethen (Tri)	71-43-2 79-01-6	0.05				< BG < BG	< BG < BG	< BG < BG	< BG < I	BG 4 BG 0.7	< BG < BG	< BG < BG	< BG < BG	< BG < BG	< BG < BG	< BG < BG	-	-	1 10	0.28		5 0.23 5 0.1	1.8 0.49	3.3 0.28	100 (Klā 100 115 µg/l (Süsswasse
## 1960 15 15 15 15 15 15 15 1	2-Dichlorpropan omdichlormathan berommathan a-1,3-Dichlorpropen	75-27-4 74-95-3 10061-01-5	0.05 0.05 0.05				< BG < BG < BG < BG	< BG < BG < BG < BG	< BG < BG < BG < BG	< BG <1 < BG <1 < BG <1	SG	< BG < BG < BG < BG	< BG < BG < BG < BG	< BG < BG < BG < BG	0.08 < BG < BG < BG	U.15 < BG < BG < BG	< BG < BG < BG	-		5	0.82 0.13 0.83	8	0.037	22 0.13	0.82 38 0.83	5
Section 1	oluol ans1.3-Dichlororoosin 1,2-Trichlorothan 3-Dichloropoan	10061-02-6	0.05				< BG	< BG	< BG	< BG 0	14 7.4	< BG	< BG	< BG	< BG	< BG	0.46	-		7000	0.041	100		1.6 0.28	0.041 97	74 μg/l (Süsswasser); 8 (Küs 300 μg/l (Süsswasser); 8
Company Comp	trachlorathen (Par) beomehlormethan 2-Dieromethan 1.1.2-Tetrachlorathan	124-48-1 106-93-4 630-20-6	0.05 0.05 0.05				< BG < BG < BG < BG	< BG < BG < BG < BG	< BG < BG < BG < BG	< BG < 1 < BG < 1 < BG < 1 < BG < 1	8G 3.8 8G < BG 8G < BG 8G < BG	0.17 < BG < BG < BG	< BG < BG < BG < BG	0.17 < BG < BG < BG	< BG < BG < BG < BG	< BG < BG < BG	< BG < BG < BG			0 40 - 0.06	0.0075 0.57	8 0.0	0 0.23 6 0.0021 - 0.22	21 0.87 0.014 0.0075 - 0.57	4.1 38 1.7 48	100
PROBLEM SEASON S	hyfberaci -Xyfoli p-Xyfol Xyfol	100-41-4 95-47-6	0.05 0.05 0.05																	- 10000 - 10000	1.5		- 19		81 19	100 ру/ (Süsswasser uzil (Klä 1.3 uzil (Süss 40 ру/ (Süsswasser); 5
Comparison Com	yrol opropylbanzol omolorm 1, 2,2-1 etrachisrethan	98-82-8	0.05				< BG < BG < BG < BG	< BG < BG < BG < BG	< BG < BG < BG	< BG < I < BG < I < BG < I < BG < I	9G 0.5 9G 0.5 9G < BG 9G < PR	< BG < BG < BG < BG	< BG < BG < BG < BG	< BG < BG < BG < BG	< BG < BG < BG < BG	< BG 0.1 < BG < BG	< BG < BG < BG < BG	-		7000	120 45 3.3 0.072			110 - 21 3.3 - 0.076	120 45 38 38	40 µg/l (Süsəwasser); 5' (Kla - 22 µg/l (Süsə 10 140 µg/l (Süsə
Comparison Com	Propylberatil omberatil 3.5.Trimethylberatil	96-18-4 103-65-1 108-86-1 108-67-8	0.05 0.05 0.05 0.05				< BG < BG < BG < BG	< BG < BG < BG < BG	< BG < BG < BG	< BG < I < BG < I < BG < I < BG < I	8G < 8G 8G 0.6 8G < 8G 8G 8.7	< BG < BG < BG < BG	< BG < BG < BG	< BG < BG < BG < BG	< BG < BG < BG	< BG < BG < BG < BG	< BG < BG < BG < BG			3500 3500	0.00075 66 6.2 6		- 0.18 - 0.12 - 4.2 - 8.7		0.53 66 6.2 6	
Comparison Com	Critortoluol ri-Butylberaol 2,4-Trimethylberaol	106-43-4 98-06-6 95-63-6	0.05 0.05 0.05				< BG < BG < BG < BG	< BG < BG < BG < BG	< BG < BG < BG < BG	< BG <1 < BG <1 < BG <1	9G < BG 9G < BG 9G < BG 9G 23.1	< BG < BG < BG < BG	< BG < BG < BG < BG	< BG < BG < BG < BG	< BG < BG < BG < BG	< BG < BG < BG < BG	< BG < BG < BG < BG	-		- 700 - 3500 - 350	24 25 69 5.6		23 24 160 8.1		24 25 69 5.6	- 8 µg/l (Süss - 32 µg/l (Süss
Profession Pro							< BG < BG < BG < BG	< BG < BG < BG	< BG < BG < BG < BG	< BG < 1 < BG < 1 < BG < 1 < BG < 1	9G < BG 9G < BG 9G < BG 9G < BG	< BG < BG < BG < BG	< BG < BG < BG < BG	< BG < BG < BG	< BG < BG < BG < BG	< BG < BG < BG < BG	0.15 < BG < BG < BG	-		3500 3500 1800	200 100 0.00033	0.	- 500 - 320 2 0.00014	0.086 0.00033	200 100 0.037	
Control Cont	naichtertsuhatien aphthalin eon 113	91-20-3	0.05				0.06 < BG	< BG < BG	< BG < BG	< BG < I	- BG BG 455 BG < BG	< BG	< BG	< BG	< BG < BG	< BG < BG	< BG < BG	-		- 1000 - 1000000	0.12 1000		- 2600	0.12	1000	2 µg/l (Süsswasser); 29/ (Klä 2/800 µg/l (Süssa
24 16 19 22 16 42 22 28 16 21 33 26	FBE (Ethyltertärbutylether)						0.16 < BG < BG	< BG < BG 0	< BG < BG 0	0.51 <1 <bg <1<br="">0 0.51</bg>	10 8G < 8G 8G < 8G 14 42	0.26 < BG < BG	< BG < BG < BG	< BG < BG	v.41 < BG < BG	0.1/ < BG < BG	- BG < BG 0.46	-		- 200 - 42000 - 2000	14		3.2	- 14	t30 -	71'000 usli (Kla
24 16 19 22 16 42 22 28 16 21 33 26	umme HalogenKW C1-C3 umme HalogenKW C1-C3 (ohne Methylenchlorid)						0.16 0 30.7 0.3	0 0	0 0.28 0	0 0 0.05 0.05	10 0 0 6.7 0 6.7	0.25 0 2.9 0.29	0 0 8220 0	0 0.05 2.59 2.59	0.41 0 0.06 0.06	0.17 0.11 1.04 0.34	0 0.05 0.05			0 -						
	otal über alles: Anzahl Substanzen > BG						24	16	19	22 1	6 42	22	28	18	21	33	26									
											-								-				-			

Organische Spurenstoffe – Emerging Pollutants Untersuchung von Deponiesickerwasser

Herausgeberin:
Kanton Zürich
Baudirektion
Amt für Abfall, Wasser, Energie und Luft

Kontakt: Nadine Schneider, Sektion Abfallwirtschaft Carole Guggenheim, Sektion Altlasten Christian Götz, Gewässerschutzlabor